

Philippine COVID-19 Living Clinical Practice Guidelines

Institute of Clinical Epidemiology, National Institutes of Health, UP Manila In cooperation with the Philippine Society for Microbiology and Infectious Diseases Funded by the DOH AHEAD Program through the PCHRD

EVIDENCE SUMMARY

Should Oseltamivir be used in the treatment of COVID-19?

Antonio L. Faltado Jr., MD FPCP, FPSEDM, MSc (cand) and Anna Angelica Macalalad-Josue, MD, FPCP, FPSEDM, MSc (cand) and Maria Teresa Sanchez-Tolosa, MD, D Clin Epi, FPDS

RECOMMENDATION

We recommend against the use of oseltamivir as treatment for patients with COVID-19 infection. (Very low quality of evidence; Strong recommendation)

Consensus Issues

The panel made a strong recommendation against the use of oseltamivir noting that the mortality rate among patients given the drug is higher compared to those given standard of care (i.e., 27% vs 6%). Likewise, results showed that the progression to severe disease is five times more likely among patients taking oseltamivir.

Key Findings

Based on the five retrospective cohort studies included in this review, oseltamivir was associated with increased risk of mortality ((Odds Ratio (OR), 4.20; [95%CI 4.03, 4.38], very low quality of evidence). Moreover, it was associated with risk of disease progression (OR 5.22; [95% CI, 2.00, 13.02], low quality of evidence) as well as longer time to viral clearance (standard mean difference (SMD) of 1.65 days longer (95% CI 1.27, to 2.03, low quality of evidence). Currently, there are five ongoing clinical trials on the efficacy of oseltamivir as treatment for COVID-19.

Introduction

Oseltamivir, a neuraminidase inhibitor, has been effective in treating influenza A and influenza B [1]. It has been hypothesized to inhibit SARS-CoV-2 proteases involved in the degradation of polyproteins that control viral replication [2]. However, an in-vitro study failed to show effectivity of oseltamivir against SARS-CoV-2 [3] while several other observational studies have conflicting results in terms of mortality benefits of oseltamivir in COVID-19 [4-6].

Review Methods

We performed a comprehensive systematic search of related literature from Medline, CENTRAL, Love Platform App and the COVID-19 NMA database. We also searched for preprint articles on medXriv, and searched for ongoing clinical trials using ClinicalTrial.gov, Clinicaltrialsregister.eu and Chinese Clinical Trial Register. Freehand search using Google was also done to check for other sources of information. Search was conducted using the following search terms: "COVID-19," "SARS-CoV-2" and "Oseltamivir." There was no limit with regard to the date, language and country of publication.

Population	COVID-19 patients any age, co-morbidities and severity
Intervention/Exposure	Oseltamivir
Comparison	Usual standard of care, placebo, any active control
Outcomes	Mortality, clinical improvement, progression free survival, need for mechanical ventilation and adverse effects
Methodological filter	randomized controlled trials (RCT), observational clinical studies, systematic review and meta-analysis available

Eligible articles were evaluated using the following criteria:

Results

We found no randomized controlled trials in our search. We obtained a total of five retrospective cohort studies: two from the search on Medline, CENTRAL, Love Platform App and COVID-19 NMA database, and three preprint articles on medXriv. We also found five ongoing clinical trials from our search of trial registries.

A total of five retrospective cohort studies with a total of 130,867 patients were included in this review, the pertinent details of which are shown in Appendix 1. The studies of Mancilla-Galindo et al., Chen et al. and Liu et al. were pre-prints and have not been peer reviewed. All of the studies enrolled confirmed COVID-19 patients by RT-PCR. The dose and duration of oseltamivir were not reported in all of the studies. The studies used electronic medical records and nationwide COVID-19 databases to collect data. There was no limit in terms of severity, although majority of patients included in the study of Chen et al. had mild to moderate COVID-19. All of the studies used statistical adjustments to reduce potential confounding and selection bias. The study of Mancilla-Galindo et al. used propensity score matching. All of the studies had adequate follow up. In this review, we found that oseltamivir use was associated with increased risk of mortality (Odds Ratio (OR), 4.20; [95% Confidence interval (CI) 4.03, 4.38], very low quality of evidence). Moreover, its use was associated with disease progression (OR, 5.22; [95% CI, 2.00, 13.02], low quality of evidence). In terms of time to viral clearance, Chen et al. showed that oseltamivir use had a standard mean difference (SMD) of 1.65 days longer (95% CI 1.27, 2.03) than the control group (low quality of evidence). However, Hu et al. reported that patients on oseltamivir had a lower risk of prolonged viral shedding (≥20 days) (Hazards Ratio (HR), 0.416; 95% CI, 0.279 to 0.620) compared to the control group (low quality of evidence).

Recommendations from other groups

There was no mention on the use of oseltamivir as treatment for COVID-19 in the Infectious Diseases Society of America (IDSA) treatment guidelines (April 14, 2021), World Health Organization (WHO) living guideline (March 31, 2021), US-NIH treatment guideline (Feb. 16, 2021) and Australian Living Clinical Practice Guidelines (May 20, 2021).

Research gaps

Currently, there are five ongoing clinical trials on the use of oseltamivir as treatment for COVID-19.

References

- Hayden F, Treanor J, Fritz R et al. Use of the oral neuraminidase inhibitor oseltamivir in experimental human influenza: randomized controlled trials for prevention and treatment. JAMA 1999; 282(13):1240-6.
- [2] Muraliharan N, Sakthivel R, Vemurugan D, Grohima M. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 protease against COVID-19. J Biomol Struc Dyn. 2020: 1-6. Doi:10.1080/07391102.2020.1752802Padayatty, S.J.; Levine, M. Vitamin C: The known and the unknown and Goldilocks. Oral Dis. 2016, 22, 463–493
- [3] Tan Q, Duan L, Ma Y, et al. Is oseltamivir suitable for fighting against COVID-19: In silico assessment, in vitro and retrospective study. Bioorg Chem. 2020; 104(June):104257. doi:10.1016/j.bioorg.2020.104257
- [4] Macilla-Galindo J, Garcia-Mendez J, Marquez-Sanchez J et a. All-cause mortality among patients treated with repurposed antivirals and antibiotics for COVID-19 in Mexico City: A real-world observational study. medRxiv 2020 preprint doi:https://doi.org/10.1101/2020.10.13.20211797.
- [5] Lee S, Park G, Moon Y, Sung K. Clinical characteristics and risk factors for fatality and severity in patients with coronavirus disease in Korea: A nationwide population-based retrospective study using the Korean Health Insurance Review and Assessment Service (HIRA) Database. Int J Environ Res Public Health 2020, 17, 8559; doi:10.3390/ijerph1728559.
- [6] Liu Q, Fang X, Tian L et al. Arbidol treatment with reduced mortality of adult patients with COVID-19 Wuhan, China: a retrospective cohort study. medRixv preprint doi:https://doi.rog/10.1101/2020.04.11.20056523.
- [7] Chen X, Zhang Y, Zhu B, et al. Association of clinical characteristics and antiviral drugs with viral RNA clearance in patients with COVID-19 in Guangzhou, China: a retrospective cohort study. medXriv preprint doi: <u>https://doi.org/10.1101/2020.04.02.200589941</u>.
- [8] Hu F, Yin G, Chen Y. et al. Corticosteroidsm, oseltamivir and delayed admission are independent risk factors for prolonged viral shedding in patients with coronavirus disease 2019. Clin Respir J. 2020; 14:1067-1075. Doi:10.1111/crj.13243

Appendix I	. Unaracteris		eu Studies		
Author, Year	Patients (n)	Intervention	Comparator	Outcomes	Study Design
Mancilla- Galido et al 2021	COVID-19 confirmed patients by RT-PCR Any severity (n=122,557)	Oseltamivir or Amantadine or Iopinavir/ritona vir or rimantadine or zanamivir or antibiotic only	No Antiviral/Anti biotic/standa rd of care	All-Cause Mortality	Real World multicenter, Retrospective cohort study
		or antiviral+ antibiotic Doses/duratio n unknown			
Lee et al 2020	COVID-19 confirmed patients by RT-PCR Any severity (n=7339)	Lopinavir/Rito navir or HCQ or antibiotics ribavirin, oseltamivir or interferon Doses/duratio n unknown	Standard of Care	Mortality, Severe COVID-19	Retrospective Cohort study
Liu et al 2021	COVID-19 confirmed patients by RT-PCR Any severity (n=504)	Lopinavir/riton avir or Arbidol or Oseltamivir	Standard of Care	Primary: In hospital death Secondary: Change in lesion size on CT scan	Retrospective Cohort
Chen et al 2020	COVID-19 confirmed patients by RT-PCR inpatient, any severity, even asymptomatic (n=284)	Oseltamivir or Arbidol or Lopinavir/Rito navir/ Chloroquine or immunoglobuli n or Corticosteroid s or antibiotics plus standard of care	Standard of Care	Time to Viral RNA Clearance	Retrospective Cohort
Hu et al	COVID-19 confirmed patients by	Arbidol or Oseltamivir or Lopinavir/Rito	Standard of Care	Viral Shedding	Retrospective Cohort

Appendix 1 Characteristics of Included Studies

Author, Year	Patients (n)	Intervention	Comparator	Outcomes	Study Design
	RT-PCR inpatient, any severity (n=183)	navir or α interferon or Ribavirin plus standard of care			

Appendix 2. GRADE Summary of Findings (SoF) Table

Author(s): Antonio L. Faltado Jr., Anna Angelica Macalalad-Josue Question: Oseltamivir compared to Standard of Care for COVID-19 Setting: Bibliogranbw-

	Certainty assessment			N₂ of patients		Effect						
N₂ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Oseltamivir	Standard of Care	Relative (95% Cl)	Absolute (95% CI)	Certainty	Importance
Mortality	Mortality											
3	observational studies	not serious	serious ^a	not serious	not serious	none	2323/8499 (27.3%)	7648/121901 (6.3%)	OR 4.20 (4.03 to 4.38)	157 more per 1,000 (from 150 more to 164 more)	⊕OOO VERY LOW	CRITICAL
Progression	to Severe Disea	se										
1	observational studies	not serious	not serious	not serious	not serious	none	8/19 (42.1%)	919/7520 (12.2%)	OR 5.22 (2.00 to 13.02)	299 more per 1,000 (from 96 more to 522 more)		CRITICAL
Time to Vira	al Clearance (in	days)										
1	observational studies	not serious	not serious	not serious	not serious	none	35	245	-	SMD 1.65 SD higher (1.27 higher to 2.03 higher)		IMPORTANT
Prolonged Viral Shedding >/=20 days												
1	observational studies	not serious	not serious	not serious	not serious	none	76/117 (65.0%)	21/66 (31.8%)	HR 0.416 (0.279 to 0.620)	171 fewer per 1,000 (from 217 fewer to 107 fewer)		IMPORTANT

Cl: Confidence interval; OR: Odds ratio; SMD: Standardised mean difference; HR: Hazard Ratio

Explanations

a. inconsistent results across studies I2=92%

Appendix 3. Characteristics of Ongoing Clinical Trials

Trial ID	Title	Status	Population	Intervention	Comparator	Outcome
EUCTR2 020- 001610- 38-DK	Irbesartan and Oseltamivir treatment of COVID-19 infection Covid- 19 protection trial	Authorised	COVID 19	Irbesartan, Oseltamivir	Placebo	Preventing patients with Covid-19 infection treated at home in hospitalizing for this disease.
NCT042 55017	An Open, Prospective/Retros pective, Randomized Controlled Cohort Study to Compare the Efficacy of Three Antiviral	Recruiting	COVID 19	Abidol hydrochlorid e, Oseltamivir, Lopinavir/rit onavir	supportive care	Time for lung recovery;Rate of disease remission

	Drugs(Abidol Hydrochloride, Oseltamivir and Lopinavir/Ritonavir) in the Treatment of 2019-nCoV Pneumonia.					
NCT045 58463	The Effectivity and Safety of Favipiravir Compared to Oseltamivir as Adjuvant Therapy for COVID-19: An Open Label Trial	Recruiting	Covid19	Favipravir	Oseltamivir	Clinical radiologic changes;Percen tage of RT-PCR test convertion
IRCT202 01202 049566N 1	Evaluation of treatment strategy Included : hydroxychloroquin e ,naproxen and oseltamivir for outpatient patients with Covid 19	Not Recruiting	COVID 19	naproxen 500 mg twice daily, hydroxychlo roquine 200 mg twice daily, and oseltamivir 75 mg twice daily for 5 days.	naproxen 500 mg twice daily, hydroxychlor oquine 200 mg twice daily for 5 days	symptoms indicative of cough, shortness of breath, fever
NCT043 03299	A 6 Week Prospective, Open Label, Randomized, in Multicenter Study of, Oseltamivir Plus Hydroxychloroquin e Versus Lopipinavir/ Ritonavir Plus Oseltamivir Versus Darunavir/ Ritonavir Plus Oseltamivir Plus Hydroxychloroquin e in Mild COVID-19 AND Lopipinavir/ Ritonavir Plus Oseltamivir Versus Favipiravir Plus Lopipinavir / Ritonavir Versus Darunavir/ Ritonavir Versus Darunavir/ Ritonavir Plus	Recruiting	COVID 19	Oseltamivir and other antiviral drugs	conventional quarantine	SARS-CoV-2 eradication time

Oseltamivir Plus Hydroxychloroquin			
e Versus			
Favipiravir Plus			
Darunavir and			
Ritonavir Plus			
Hydroxychloroquin			
e in Moderate to			
Critically III COVID-			
19			