

Institute of Clinical Epidemiology, National Institutes of Health, UP Manila In cooperation with the Philippine Society for Microbiology and Infectious Diseases Funded by the Department of Health

EVIDENCE SUMMARY

Among patients suspected to have COVID-19, how accurate are rapid antigen tests compared to RT-PCR for the diagnosis of COVID-19?

Update by: Marc Andrew O. Perez, MD, Giselle Anne Q. Adajar, MD, Michelle Cristine Miranda, MD, Howell Henrian G. Bayona, MSc

Initial Review by: Aldrich Ivan Lois D. Burog, MD, MSc (cand.), Marie Gene Cruz, MD, Ian Theodore G. Cabaluna, MD, RPh, GDip(Epi), Renee Rose O. Maglente, RN, GDip (Epi), Howell Henrian G. Bayona, MSc

RECOMMENDATION

We suggest the use of rapid antigen test for the diagnosis of symptomatic individuals suspected of COVID-19 as an alternative to RT-PCR if all the following conditions are met: (*Low certainty of evidence; Weak recommendation*)

- a. Individuals are in the early phase of illness (less than or equal to 7 days from onset of symptoms)
- b. Testing kits demonstrated sensitivity of more than or equal to 80% AND have very high specificity of more than or equal to 97%

We suggest against the use of rapid antigen test for screening purposes. (Low certainty of evidence; Weak recommendation)

We suggest against the use of saliva as specimen for rapid antigen test in patients suspected of COVID-19 infection. (Low certainty of evidence; Weak recommendation)

We suggest against the use of rapid antigen tests alone in asymptomatic patients suspected of COVID-19 infection. (Low certainty of evidence; Weak recommendation)

We suggest the use of rapid antigen tests for the diagnosis of individuals suspected of COVID-19 during the setting of an outbreak provided that all the following conditions are met: (Very low certainty of evidence; Weak recommendation)

- a. Individuals are in the early phase of illness (less than or equal to 7 days from onset of symptoms); AND
- b. Testing kits demonstrated sensitivity of more than or equal to 80% AND have very high specificity of more than or equal to 97%.

There is insufficient evidence to recommend for or against the use of repeat antigen testing for screening or diagnosis of COVID-19. (Very low certainty of evidence)

A negative rapid antigen test should be confirmed with an RT-PCR in settings or situations wherein COVID-19 is highly suspected (e.g., symptomatic or asymptomatic close contacts of probable or confirmed COVID-19 individuals).

Consensus Issues

The panel was unanimous against (1) the use of rapid antigen test for screening purposes, (2) the use of saliva as specimen for rapid antigen tests, and (3) the use of rapid antigen test alone in asymptomatic patients suspected of COVID-19 infection due to the observed lower sensitivity of these tests under such conditions. A unanimous decision on the insufficiency of evidence to recommend for or against the use of repeat antigen testing was also made.

Majority of the panelists agreed that the following conditions should be met when using rapid antigen tests:

- a. Individuals are in the early phase of illness, because antigen tests perform best during this period; and
- b. Testing kits have a sensitivity of more than or equal to 80% and specificity of more than or equal to 97%, because the quality of the test kit should be ensured.

One of eleven panelists raised a concern on the specified sensitivity and specificity of the testing kits, as these are based on the Health Technology Assessment Council (HTAC) of the local Department of Health (DOH).

A weak recommendation on the use of rapid antigen tests for diagnosing COVID-19 suspects during outbreaks was made based on nine observational studies with unclear patient selection, conduct of reference standard, and patient flow and timing. The risk of exposure was an important consideration for the panel, citing that it is not cost-effective to test everyone during an outbreak. However, the risk stratification of participants was not specified in any of the studies.

PREVIOUS RECOMMENDATION

We recommend the use of rapid antigen test in patients suspected of COVID-19 infection meeting all the following conditions: (*Moderate quality of evidence; Strong recommendation*)

Symptomatic AND

Early phase ≤7 days from onset of symptoms AND

Specific brands that demonstrated sensitivity \geq 80% and have very high specificity (\geq 97-100%)

We recommend against the use of saliva as a specimen for rapid antigen test in patients suspected of COVID19 infection. (*Moderate quality of evidence; Strong recommendation*)

We recommend against the use of rapid antigen tests alone in asymptomatic patients suspected of COVID-19 infection. (Moderate to high quality of evidence; Strong recommendation)

Previous Consensus Issues

There were only two studies that used saliva as a specimen for rapid antigen test, which produced a pooled sensitivity of 17% (95% CI 13-23%) and a pooled specificity of 99% (95% CI 99-100%). Given the current evidence on the very low sensitivity for saliva, qualifying which specimen is used for a rapid antigen test is necessary.

What's new in this version?

- There are 124 new observational studies added to the initial studies evaluated in the previous evidence summary.
- New evidence on the use of antigen tests in special populations (children, healthcare workers), in the setting of an outbreak, as well as repeated/serial antigen testing was included in this review.
- Subgroup analysis was applied on the effect of cycle threshold values and additional test brands.
- Evidence on costs and resource implications of antigen testing was added.
- The certainty of evidence was downgraded due to risk of bias issues and inconsistencies across evaluations resulting in a change of draft statements to "suggest" from "recommend".

Key Findings

- A total of 164 observational studies assessed the diagnostic accuracy of rapid antigen tests (RAgTs) against reverse transcriptase - polymerase chain reaction (RT-PCR) as the reference standard. Studies included different test brands, specimen types and timing of collection, symptom status, cycle threshold (CT) values, and populations, namely impatiens, children, and healthcare workers among others.
- The overall sensitivity of RAgTs is moderate at 0.71 (95% CI 0.68-0.73) while specificity is excellent at 0.995 (95% CI 0.993-0.996). This was comparable to the data of the previous evidence summary with pooled sensitivity of 0.72 (95% CI 0.64-0.78) and specificity of 0.99 (95% CI: 0.99-1.0).
- On subgroup analysis, RAgT showed higher sensitivity when used in symptomatic individuals (Sn 0.74, 95% CI 0.71-0.78), when conducted during the early phase or first week of illness (Sn 0.79, 95% CI 0.75-0.82), in positive specimens with Ct value <25 (Sn 0.94, 95% CI 0.92-0.96), and in other Ct thresholds considered as "high" viral load (Sn 0.89, 95% CI 0.0.85-0.92). Pooled sensitivity of commonly used specimen types falls between 65% to 79%. FDA-approved RAgT brands have pooled sensitivities ranging from 0-90% with improved performance of commonly used RAgT brands when used in symptomatic individuals.
- In outbreak settings, RAgT use remained to have an excellent specificity (Sp 0.966, 95% CI 0.997 0.999) with a similar sensitivity (Sn 0.68, 95% CI 0.45-0.84) but with less precise estimates.
- The overall certainty of evidence was low because of serious risk of bias in all domains (high and unclear risk in patient selection, conduct of index test and reference standard, and flow and timing) and serious inconsistency. Despite performing pre-specified subgroup analyses, significant heterogeneity was still observed. In certain subgroup analyses, such as use of RAgT in outbreak settings and saliva specimens, certainty of evidence was further downgraded to very low due to imprecision attributed to wide interval estimates.

Introduction

Reverse-transcriptase polymerase chain reaction (RT-PCR) test remains to be the gold standard in the diagnosis of COVID-19. Despite excellent diagnostic accuracy, RT-PCR-based assays are not entirely practical for all testing scenarios due to its need for additional specialized equipment, specialized training of laboratory-based staff, and high cost. On the other hand, rapid antigen tests (RAgTs) detect the presence of specific viral antigens with a faster turnaround time which may be performed at the point of care, are simple to use, requiring shorter training, and are relatively less expensive compared to RT-PCR tests.[1] If sufficiently accurate, RAgT can facilitate

timely decisions concerning the need for isolation, monitoring, treatment and contact tracing activities.[2]

The previous review by Burog et al in March 2021 showed that the pooled sensitivity and specificity of 30 studies and 10 evaluation reports on RAgTs were 0.72 (95% CI 0.64-0.78; $I^2=95.77$) and 0.99 (95% CI 0.99-1.0; I2=93.16) respectively.[3] Therefore, RAgT use was only recommended strictly for symptomatic individuals during the early phase of illness using brands with at least moderate sensitivity (≥ 0.80) and high specificity ($\geq 0.97 - 1.00$).

With the addition of more RAgTs available for use in COVID-19 screening and diagnosis, this update investigated the diagnostic accuracy of RAgTs and compared it with that of the previous review. This can influence changes in the recommendations guiding current clinical practice.

Review Methods

We searched MEDLINE for studies published until September 30, 2021 using subject headings combined with free text terms related to COVID-19 or SARS-CoV-2 and rapid antigen tests/testing, with no language limits or method filters. Appendix 2 shows the detailed search.

Preprint studies were identified using the COVID-19 Living Evidence Database (https://zika.ispm.unibe.ch/assets/data/pub/search_beta/) with "antigen" as the search term. This database is updated daily and includes preprints from medRxiv and bioRxiv, as well as published articles from EMBASE and PubMed. The Cochrane COVID-19 Study Register (covid-19.cochrane.org/) was also searched using "antigen" as a search term. Search for related links and journals was also carried out. Bibliography sections of the included studies were reviewed for relevant articles that might be missed by database search.

To supplement the initial search yield, available data on RAgT from FIND SARS-CoV-2 Diagnostic pipeline (https://www.finddx.org/covid-19/dx-data/) was accessed. Reported sensitivity and specificity estimates from the package inserts of RagTs approved by the Philippine FDA were also retrieved but were not included in the main analysis. Relevant clinical trials were searched on clinicaltrials.gov and the WHO International Clinical Trials Registry Platform (ICTRP). Local publications such as health technology assessments on the use of RAgTs were also sought. Methodological qualities of the diagnostic studies were assessed by independent reviewers using the QUADAS-2 instrument.

Heterogeneity was determined by visual inspection of forest plot of study evaluations and summary receiver operating characteristic (SROC) plot. Because of anticipated heterogeneity across studies, pooled sensitivity and specificity estimates were derived by stratifying studies according to test brand, CT value used, presence of symptoms, timing of specimen collection, and special populations such as children and healthcare workers. Summary estimates for sensitivity and specificity with 95% confidence intervals were derived using a random-effects bivariate binomial model [4] fitted as a generalized linear mixed effect model using the *metandi* and *gllam* commands in Stata/MP 13.0.[5] When only fewer than four studies were available for pooling, summary estimates were computed externally through a web-based app (MetaDTA v2.01; <u>https://crsu.shinyapps.io/dta_ma/</u>).[6,7] Results were graphically displayed in SROC curves with the summary operating points and 95% confidence regions as well as coupled forest plots.

Sensitivity analysis was performed by removing studies with low methodologic quality or with risk of bias issues in certain QUADAS-2 domains, and subsequently assessing their impact on overall diagnostic accuracy estimates.

Out of 802 titles and abstracts screened, we retrieved 198 full-text articles relevant to the key question. Removal of duplicate copies (e.g. 40 studies included in the initial RAgT review which were already available) and articles with incomplete or no data yielded 124 new studies that were appraised and included for final analysis in this update of the evidence summary.

Results

Characteristics of included studies

In addition to the 40 studies evaluated in the previous evidence review, 124 new published articles were appraised and analyzed, yielding in a total of 164 included observational studies [8-171] involving 235,546 samples. Using RT-PCR as reference standard, 25 different RAgT brands approved by the Philippine Food and Drug Administration (FDA) were evaluated. Included studies looked into screening and diagnosis of symptomatic and asymptomatic patients, employees, healthcare workers and students in both community and hospital settings. Appendix 3 shows a summary of the characteristics of included studies.

Methodological quality of included studies

The overall methodological quality of the included studies was rated as low. In < 50% of included studies, high and unclear risk of bias were seen in all domains particularly in the patient selection and conduct of both index test and reference standard. Issues on applicability, on the other hand, were documented in < 25% of studies. Certainty of evidence was downgraded to very low when only studies on outbreak settings were pooled due to the presence of imprecision. Appendix 4 shows a detailed assessment of the risk of bias of included studies.

Diagnostic accuracy of RAgT

A. Overall diagnostic accuracy

Across 164 studies, the pooled sensitivity of RAgTs was found to be moderate at 0.71 (95% CI 0.68-0.73). Pooled specificity was excellent at 0.995 (95% CI 0.994-0.996). Visual examination of forest plots and SROC plot indicated highly heterogeneous sensitivity estimates across studies. Figure 1 shows the SROC plot.

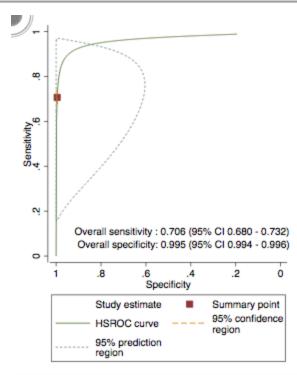


Figure 1. Summary receiver operating characteristic (SROC) plot showing the summary sensitivity and specificity point (165 studies / 272 evaluations). The 95% prediction region reflects heterogeneity in test accuracy across studies.

B. Subgroup Analysis

Table 1 shows the sensitivity of self-administered RAgTs per subgroup.

Institute of Clinical Epidemiology, National Institutes of Health, UP Manila In cooperation with the Philippine Society for Microbiology and Infectious Diseases Funded by the Department of Health

Table 1. Subgroup Analysis for Sensitivity of RAgTs

	Curren	Current Review			
Variable	Studies/ Evaluations (Samples)	Sensitivity (95% CI)	Sensitivity (95% CI)		
OVERALL	272 (235,794)	0.71 (0.68, 0.73)	0.72 (0.64, 0.78)		
Special Populations					
Children	11 (5,101)	0.79 (0.70, 0.86)	Not evaluated		
Healthcare workers	5 (1,554)	0.82 (0.64, 0.92)	Not evaluated		
Presence of symptoms					
Symptomatic	79 (45,523)	0.74 (0.71, 0.78)	0.78 (0.69, 0.86)		
Asymptomatic	55 (72,858)	0.56 (0.51, 0.62)	0.51 (0.39, 0.63)		
Timing of testing in relation to symptoms					
Early	54 (28,591)	0.79 (0.75, 0.82)	0.71 (0.44, 0.89)		
Mixed	44 (69,501)	0.70 (0.65, 0.74)	0.81 (0.76, 0.85)		
Late	23 (4,307)	0.47 (0.39, 0.55)	0.65 (0.57, 0.71)		
Test brand and presence of symptoms					
Panbio™ Ag-RDT (Abbott)	39 (29,764)	0.72 (0.67, 0.77)	0.76 (0.61, 0.86)		
Symptomatic	17 (6,551)	0.77 (0.72, 0.82)	Not evaluated		
Asymptomatic	11 (2,642)	0.52 (0.45, 0.59)	Not evaluated		
Standard Q COVID-19 Ag Test (SD Biosensor)	30 (24,102)	0.72 (0.66, 0.78)	0.77 (0.58, 0.94)		
Symptomatic	12 (4,439)	0.75 (0.68, 0.81)	Not evaluated		
Asymptomatic	7 (2,903)	0.65 (0.59, 0.70)	Not evaluated		
Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)	16 (12,351)	0.71 (0.61, 0.80)	0.66 (0.55, 0.75)		
● Symptomatic	3 (452)	0.83 (0.62, 0.94)	Not evaluated		
Asymptomatic	6 (6,070)	0.80 (0.57, 0.93)	Not evaluated		
BinaxNOW SARS-CoV-2 (Abbott)	13 (39,177)	0.63 (0.50, 0.74)	0.90 (0.66, 0.93)		
•Symptomatic	8 (3,425)	0.81 (0.73, 0.87)	Not evaluated		

●Asymptomatic	5 (6,771)	0.61 (0.52, 0.69)	Not evaluated
Sofia SARS Antigen Fluorescent Immunoassay (Quidel)	8 (7,343)	0.75 (0.67, 0.81)	0.70 (0.53, 0.85)
Symptomatic	8 (3,798)	0.78 (0.71, 0.84)	Not evaluated
●Asymptomatic	2 (2,564)	0.58 (0.48, 0.67)	Not evaluated
Standard F Covid19 Ag FIA (SD Biosensor)	7 (4,396)	0.72 (0.41, 0.91)	0.64 (0.40, 0.85)
Symptomatic	3 (667)	0.75 (0.43, 0.92)	Not evaluated
●Asymptomatic	1 (2,340)	0.65 (0.54, 0.75)	Not evaluated
Biocredit COVID-19 Ag test (RapiGEN)	7 (827)	0.54 (0.39, 0.69)	0.55 (0.38, 0.71)
•Symptomatic	2 (132)	0.50 (0.27, 0.73)	Not evaluated
●Asymptomatic	1 (27)	0.33 (0.20, 0.50)	Not evaluated
COVID-19 Rapid Antigen Test (BD Veritor)	5 (5,183)	0.68 (0.54, 0.79)	0.76 (00.60, 0.89)
•Symptomatic	3 (821)	0.83 (0.72, 0.91)	Not evaluated
●Asymptomatic	1 (2,317)	0.59 (0.51, 0.66)	Not evaluated
Coronavirus Ag Rapid Test Cassette (Healgen Scientific)	3 (715)	0.84 (0.77, 0.90)	0.77 (0.67, 0.85)
● Symptomatic	1 (332)	0.79 (0.72, 0.86)	Not evaluated
VITROS Immunodiagnostic Products SARS- CoV-2 Antigen test (Ortho Clinical Diagnostics)	2 (336)	0.78 (0.72, 0.84)	0.80 (0.74, 0.90)
NADAL COVID-19 Rapid Antigen Test (Nal Von Minden)	2 (931)	0.74 (0.45, 0.91)	Not evaluated
AFIAS COVID-19 Ag (AFC) (Menarini)	2 (1,049)	0.42 (0.38, 0.47)	Not evaluated
SARS-CoV-2 Antigen Rapid Test Kit (Lepu Medical)	1 (286)	0.46 (0.36, 0.56)	Not evaluated
CareStart COVID-19 Antigen Test (Access Bio)	1 (286)	0.46 (0.34, 0.45)	Not evaluated
Encode SARS-CoV-2 Antigen Rapid Test Device (Zhuhai Encode Medical Engineering)	1 (200)	0.74 (0.64, 0.82)	Not evaluated
Elecsys SARS-CoV-2 Antigen assay (Roche)	1 (3,143)	0.60 (0.55, 0.65)	Not evaluated
SIENNA COVID-19 Antigen Rapid Test Cassette	1 (150)	0.90 (0.82, 0.95)	Not evaluated
GenBody COVAG025 Rapid Antigen Test	1 (130)	0.90 (0.73, 0.98)	Not evaluated

		1		
Humasis COVID-Ag Test COVID-19 Antigen (Humasis)	1 (21)	0.90 (0.70, 0.99)	Not evaluated	
NowCheck COVID-19 Ag Test (Bionote)	1 (1,326)	0.56 (0.21, 0.86)	0.89 (0.81, 0.95)	
StrongStep Rapid Antigen Test (Liming)	1 (19)	0 (0, 0.34)	Not evaluated	
Huaketai SARS-CoV-2 Rapid Antigen Test (Savant)	1 (109)	0.17 (0.09, 0.27)	0.17 (0.09, 0.27)	
SARS-CoV-2 Antigen Rapid Test Kit (JOYSBIO)	1 (225)	0.58 (0.47, 0.68)	Not evaluated	
ichromaTM COVID-19 Ag (Boditech)	1 (966)	0.41 (0.37, 0.46)	Not evaluated	
CT value		•		
Low (<25)	40 (6,906)	0.94 (0.92, 0.96)	Not evaluated	
High (>25)	35 (5,076)	0.39 (0.38, 0.42)	Not evaluated	
Other Ct thresholds for 'higher' viral load	27 (14,398)	0.89 (0.85, 0.92)	Not evaluated	
Other Ct thresholds for 'lower' viral load	18 (1,996)	0.29 (0.20-0.41)	Not evaluated	
Specimen type		•		
Exhaled breath	1 (105)	0.92 (0.64, 1.0)	Not evaluated	
Nasopharyngeal and Saliva	1 (343)	0.91 (0.76, 0.98)	Not evaluated	
Nasal (anterior nares and mid-turbinate)	24 (51,399)	0.79 (0.74, 0.83)	0.84 (0.66, 0.93)	
Nasopharyngeal	99 (111,446)	0.71 (0.68, 0.75)	0.72 (0.65, 0.78)	
Nasopharyngeal and Oropharyngeal	35 (38,387)	0.65 (0.59, 0.71)	0.65 (0.47, 0.79)	
Oropharyngeal	3 (8,568)	0.59 (0.42, 0.73)	Not evaluated	
Saliva	7 (6,148)	0.57 (0.22, 0.86)	0.17 (0.13, 0.23)	
Nasal and Oropharyngeal	1 (18,457)	0.49 (0.47, 0.51)	Not evaluated	
Sputum	1 (45)	0.11 (0.04, 0.24)	Not evaluated	
In Outbreak Settings				
Overall	9 (6805)	0.68 (0.45 - 0.84)	Not evaluated	
Symptomatic	3 (398)	0.14 - 0.89	Not evaluated	
Asymptomatic	3 (1142)	0.22 - 0.92	Not evaluated	
Methodological quality				
Studies with low risk of bias	83 (73,469)	0.75 (0.71, 0.79)	Not evaluated	

Studies with high risk of bias	96 (88 252)	0.64 (0.58, 0.69)	Not evaluated
Studies with unclear risk of bias	93 (74 073)	0.73 (0.68. 0.77)	Not evaluated

By special population

The evidence summary update incorporated analysis of RAgT use in special populations. The pooled sensitivity of RAgT use in children was 0.79 (95% CI 0.70-0.86; n=5,101; 11 studies) while pooled sensitivity was 0.82 (95% CI 0.64-0.92; n=1,554; 5 studies) when used among healthcare workers. Though RAgT use in both populations showed high performance, more trials may be needed to substantiate recommendations for these specific populations.

By presence of symptoms

The use of RAgT in symptomatic individuals showed higher pooled sensitivity (Sn=0.74, 95% CI 0.71-0.78; n=45,523; 79 studies) compared to that of asymptomatic individuals (Sn=0.56, 95% CI 0.51-0.62; n=72 858; 55 studies). This is consistent with previous estimates showing higher sensitivity of RAgT in symptomatic individuals (Sn 0.78, 95% CI 0.69-0.86) compared to asymptomatic individuals (Sn 0.51, 95% CI 0.39-0.63).

By time of testing in relation to symptom onset

When RAgt was used either during the early (0-7 days) or late phase (>7 days) from symptom onset, the pooled sensitivity was 0.70 (95% CI 0.65-0.74; n=69,501; 44 studies). The pooled sensitivity increased to 0.79 (95% CI 0.75-0.82; n=28,591; 54 studies) when RAgT was used in the early phase of illness and decreased to 0.47 (95% CI 0.39-0.55; n=4,307; 23 studies) when RAgT was used during the late phase of the disease.

<u>By test brand</u>

Moderate performance was demonstrated by the five most commonly used RAgT brands, namely Abbott Panbio (Sn 0.72, 95% CI 0.65-0.77; n=29,764; 39 studies), SD biosensor Standard Q COVID-19 Ag (Sn 0.72, 95% CI 0.66-0.78; n=24,102; 30 studies), Roche SARS-CoV-2 Rapid Antigen Test (Sn 0.71, 95% CI 0.61-0.80; n=12,351; 16 studies), Abbott BinaxNOW CoVID-19 Antigen Card (Sn 0.63, 95% CI 0.50-0.74; n=39 177; 13 studies) and Quidel Sofia SARS Antigen Fluorescent Immunoassay (Sn 0.75, 95% CI 0.67-0.81, n=7,343; 8 studies).

Subgroup analysis showed improved diagnostic performance of the above RAgT brands when used with symptomatic individuals as pooled sensitivity increased in the range of 0.75 (95% CI 0.68-0.81; SD biosensor Standard Q COVID-19 Ag) to 0.83 (95% CI 0.62-0.94; Roche SARS-CoV-2 Rapid Antigen Test).

Though highest sensitivity was documented in the RAgT brands SIENNA COVID-19 Antigen Rapid Test (Sn 0.90, 95% CI 0.82-0.95; n=150; 1 study), GenBody COVAG025 Rapid Antigen Test (Sn 0.90, 95% CI 0.73- 0.98; n=130; 1 study) and Humasis COVID-Ag Test (Sn 0.90, 95% CI 0.70- 0.99; n=21; 1 study), their use in a limited number of samples warrant more trials to further validate their clinical utility.

By cycle threshold (Ct) value of RT-PCR

RAgTs demonstrated excellent performance in positive RT-PCR specimens having Ct value ≤25 with pooled sensitivity at 0.94 (95% CI 0.92-0.96; n=6,906; 40 studies). Studies that used Ct cutoff values other than 25 still showed better performance when samples had higher viral loads (i.e., lower Ct values) with a sensitivity of 0.89 (95% CI 0.85-0.92; n=14,398; 27 studies) versus 0.29 (95% CI 0.20-0.41; n=1996; 18 studies) when used in those with "low" viral load.

By specimen type

RAgT using exhaled breath samples showed the highest sensitivity (Sn 0.92, 95% CI 0.64-1.00; n=105; 1 study). This was followed by samples from combined nasopharyngeal and saliva (Sn 0.91, 95% CI 0.76-0.98; n=343; 1 study). However, the use of these specimens was limited to single studies with imprecise estimates.

The more commonly used specimen types, namely nasal, nasopharyngeal, combined nasopharyngeal and oropharyngeal, have moderate sensitivities. RAgTs had a pooled sensitivity of 0.79 (95% CI 0.74-0.82; n=51,399; 24 studies) when used in nasal specimens, 0.71 (95% CI 0.67-0.74; n=111,446; 102 studies) when used in nasopharyngeal specimens, and 0.65 (95% CI 0.59-0.71; n=38,387; 35 studies) when used in combined nasopharyngeal and oropharyngeal specimens.

Sputum as a specimen type had the lowest sensitivity (Sn 0.11, 95% Cl 0.04-0.24; n=45; 1 study). Seven studies using saliva as the specimen type demonstrated poor sensitivity at 0.57 (95% Cl 0.22-0.86; n=6,148). This result is consistent with the findings of the previous review.

By serial/repeat testing

Two observational studies with unclear risk of bias provided data on repeat testing. In the study of Shah et al., repeat antigen testing of anterior nasal specimen using Abbott BinaxNOW CoVID-19 Antigen Card in a community setting taken within 30 minutes from the initial evaluation showed an improved sensitivity from 0.77 (95% CI 0.72-0.82) to 0.81 (95% CI 0.77-0.86). This study tested a total of 2110 patients, 1190 (56%) of which were symptomatic. [148]

Using the same specimen type and RAgT brand, McKay and colleagues employed 3 rounds of serial testing over a 13-day period (every 4-5 days) among nursing home residents and staff using RT-PCR as reference standard. Majority of the subjects were asymptomatic (451/532 or 84.7%). Sensitivity was inconsistent across different test rounds: 1st round at 0.74 (95% CI 0.59-0.86), 2nd round at 0.63 (95% CI 0.47-0.78), and 3rd round at 0.67 (95% CI 0.41-0.88) respectively. On the other hand, specificity remained high throughout the study with a range of 0.97 to 1.0.[106]

During outbreak settings

The authors identified nine observational studies [23, 24, 27, 47, 93, 106, 112, 130, 159] that involved settings or scenarios wherein rapid antigen testing was compared to RT-PCR testing in the context of an outbreak. Six out of the nine studies consisted of a mixed population of asymptomatic and symptomatic. In studies during outbreaks and surges, rapid antigen tests had a pooled sensitivity of 0.68 (95% CI 0.45-0.84) which was similar to the overall pooled sensitivity of included studies but with less precise estimates. Pooled specificity remained excellent at 0.996 (95% CI 0.997-0.999). Certainty of evidence of the pooled studies on outbreak settings was downgraded to very low due to the presence of imprecision.

I. In Symptomatic Individuals

Three studies [23, 106, 112] provided specific data on symptomatic subjects. The three studies tested subjects within the early and late phases of illness with RT-PCR as the reference standard. A summary sensitivity estimate was not calculated due to the small number of studies and the variability in the test brands and specimens used. Sensitivity ranged from 0.14 to 0.89. When the

study with the lowest sensitivity estimate and high risk of bias [112] was excluded from analysis, sensitivity ranged from 0.76 to 0.89.

In the study by Bianco et al., 231 individuals reported at least one COVID-19 symptom and were tested using LumiraDx[™] SARS-CoV-2 Antigen Test with RT-PCR as the reference standard. Sensitivity and specificity were high at 0.89 (95% CI 0.0.84-0.93) and 0.88 (95% CI 0.73-0.97) respectively.

Among residents and staff of a nursing home in the study by Mckay et al., 79 paired specimens were evaluated using the BinaxNOW COVID-19 Ag Card, which showed moderate sensitivity of 0.76 (95% CI 0.58-0.89) but excellent specificity of 1.00 (95% CI 0.92-1.0)

Nagura-Ikeda reported the lowest sensitivity estimate of 0.14 (95% CI 0.07-0.27) and specificity of 1.00 (95% CI 0.8-1.0) from collected saliva specimens of 88 individuals using the Espline SARS-CoV2 (Fujirebio) Rapid Antigen Test.

II. In Asymptomatic Individuals

Three studies [23, 106, 112] provided data on asymptomatic subjects. A summary sensitivity estimate was not calculated due to the small number of studies and the variability in the test brands and specimens used. Sensitivity ranged from 0.22 to 0.92. When the study with the lowest sensitivity estimate [112] and high risk of bias was excluded from analysis, sensitivity ranged from 0.65 to 0.92.

The lowest sensitivity estimate of 0.22 (95% CI 0.03-0.6) was obtained from the study by Nagura-Ikeda et al. [112] which used saliva specimens and had high risk of bias. The remaining two observational studies used nasal specimens and showed higher sensitivities but had unclear risk of bias. In the study by Bianco et. al, 676 subjects underwent rapid antigen testing using LumiraDx[™] SARS-CoV-2 Antigen Test with RT PCR as the reference standard. Sensitivity and specificity were high at 0.92 (95% CI 0.85-0.97) and 0.92 (95% CI 0.90-0.94) respectively. A total of 451 paired specimens from asymptomatic residents and staff of a nursing home were evaluated in a study by Mckay et al. The BinaxNOW COVID-19 Ag Card was used for testing which showed poor sensitivity of 0.65 (95% CI 0.53-0.76) but excellent specificity of 0.98 (95% CI 0.96-0.99).

C. Sensitivity Analysis

RAgT showed an improved overall sensitivity when only studies with low risk of bias (high methodological quality) were included in the analysis (pooled Sn 0.75, 95% CI 0.71-0.79; n=73,469). This estimate appears to be comparable to that of studies with unclear risk of bias (Sn 0.73, 95% CI 0.68-0.77; n=74 073). In contrast, studies with high risk of bias in any of the four QUADAS-2 domains (patient selection, index test, reference standard, flow interval) produced significantly lower sensitivity estimates (pooled Sn 0.64, 95% CI 0.58-0.69; n=88,252).

Ongoing Studies on RAgT

As of November 2021, there were 24 ongoing trials [172-195] on the use of RAgTs for COVID-19 registered at ClinicalTrials.gov. Most of the trials compare the accuracy of RAgTs to RT PCR. Specimen type and brands used across the trials are varied. There are trials exploring the potential of RAgTs for screening and surveillance in various settings (i.e. workplace, airports, mass gatherings, community).

Other Considerations

With the increase in RAgT use, some studies have explored the economic advantage brought by testing. A cost-benefit study by Diel and Nienhaus in Germany have shown that the implementation of the Sofia SARS Antigen FIA test saved on average about 210 euros as compared to clinical-judgment only. Furthermore, with a high prevalence rate of 15.6% in the same study population, point-of-care COVID-19 antigen testing reduced average costs of hospitalized patients by 213 euros per tested patient.[196]

Another study has explored the economic effects of home-based RAgT in the United States of America. Despite the imperfections of home testing for COVID-19, the epidemic modeling done has shown that home-based RAgT can reduce transmission of infection and mortality at a justifiable cost.[197] No local economic evaluation study has been performed on RAgTs to date.

As there are numerous COVID-19 tests available, authorized organizations namely Philippine Food and Drug Administration (FDA) and the Research Institute for Tropical Medicine (RITM) were tasked to evaluate commercially manufactured COVID-19 tests to ensure the quality of the tests in the local setting. [198] The Philippine FDA-approved brands are constantly being updated because of this evaluation. Among the brands included in this review, Panbio[™] Ag-RDT (Abbott), Sofia SARS Antigen Fluorescent Immunoassay (Quidel), and NowCheck COVID-19 Ag Test (Bionote) have passed the performance evaluation as of August 2, 2021.[199] In an advisory dated September 13, 2021, caution was advised on the use of COVID-19 Rapid Antigen Test (BD Veritor), NADAL COVID-19 Rapid Antigen Test (Nal Von Minden), and SARS-CoV-2 Antigen Rapid Test Kit (JOYSBIO) as these brands have failed the performance evaluation.[200] Standard Q COVID-19 Ag Test (SD Biosensor) was listed under the tests being recalled for the low performance in the evaluation and for failure to explain the non-conformance of the product to the specifications declared last August 2, 2021.[201] The company distributing ichroma COVID-19 Ag voluntarily surrendered their authorization to market the product as of June 18, 2021.[202]

The Department of Health (DOH) issued a memorandum dated September 1, 2021 which strictly placed a price cap of Php 960 for RAgT in all testing and clinical laboratories.[203] Unit cost of the different brands of RAgT kit in the market ranges from Php 250 to Php 1,600. Table 2 lists the available unit cost of RAgT kits locally. Automated RAgTs are much more costly than the manually interpreted RAgT.

Test Brand	Unit Cost
Sofia SARS Antigen Fluorescent Immunoassay (Quidel)	Php 1 600 (32 USD)
VITROS Immunodiagnostic Products SARS-CoV-2 Antigen test (Ortho Clinical Diagnostics)	Php 1 067 (21 USD)
COVID-19 Rapid Antigen Test (BD Veritor)	Php 907 (18 USD)
SIENNA COVID-19 Antigen Rapid Test Cassette	Php 750 (15 USD)
Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)	Php 705 (14 USD)
GenBody COVAG025 Rapid Antigen Test	Php 503 (10 USD)
CareStart COVID-19 Antigen Test (Access Bio)	Php 605 (12 USD)

Table 2. Unit Price of RAgT Kits

Standard Q COVID-19 Ag Test (SD Biosensor)	Php 550
Panbio™ Ag-RDT (Abbott) 1000-4975 tests (40-199 boxes)	Php 520 (13 USD)
NADAL COVID-19 Rapid Antigen Test (Nal Von Minden)	Php 349 (€ 6)
BinaxNOW SARS-CoV-2 (Abbott)	Php 250 (5 USD)
Coronavirus Ag Rapid Test Cassette (Healgen Scientific)	Php 680 (£ 10)

Recommendations from Other Groups Table 3 summarizes the recommendations from different agencies, countries, and organizations regarding the use of rapid antigen tests.

Table 3. Summar	y of Recommendations from Other Groups
-----------------	--

Agency	Recommendation	Date
Department of Health Health Technology Assessment Council [204]	 The HTAC does not recommend the use of rapid antigen tests for indiscriminate use in mass screening, for return-to-work clearance and for COVID-19 diagnosis in individuals with low index of suspicion (i.e., asymptomatic and no history of exposure). Rapid antigen tests are currently recommended by HTAC only for very specific purposes: For targeted screening and diagnosis of suspected and probable cases of COVID-19 (i.e., with a high index of suspicion), meeting the clinical and/or epidemiologic criteria in the hospital or community settings. For testing of patients in the hospital setting, where the turnaround time is critical, to guide patient cohort management to minimize transmission of COVID-19 among healthcare workers and other patients. (Hospitals are high-risk settings among healthcare workers and patients.) Otherwise, use RT-PCR in case of elective procedures; For targeted screening and diagnosis of suspect and probable cases of COVID-19 (as defined above) in presumptive outbreaks where the result of the RT-PCR test of one suspect has not yet been released and in settings where RT-PCR is not immediately available or when delayed release of result or prolonged turnaround time is expected (i.e., more than 48 hours). For local border screening at points of entry for individuals travelling from areas with a high daily positivity rate averaged over a seven-day period (i.e., >10%) or as reported by the DOH-Epidemiology Bureau based on its periodic updates of prevalence rate/positivity rate; and, For international border screening at points of entry, always assume a high prevalence/positivity rate. A periodic update every month of prevalence rate/positivity rate per country is also suggested. It is recommended that the RT-PCR or RAgT test be used for screening of all incoming individuals in accordance with existing protocol and testing guidelines. Facility- or home-based quarantine shall also be implemented together with RT-PCR or Rapid Antigen test	Apr 30, 2021
Infectious Disease Society of America [205]	Recommendation 1 : For symptomatic individuals suspected of having COVID-19, the IDSA panel suggests using standard NAAT (either rapid RT-PCR or laboratory-based NAAT) over rapid Ag tests (conditional recommendation based on moderate certainty in test accuracy of rapid Ag test and very low certainty in comparative test accuracy of rapid RT-PCR versus rapid Ag tests) Recommendation 2 : For asymptomatic individuals with risk for exposure to SARS-CoV-2 infection, the IDSA panel suggests using a single standard NAAT (either rapid RT-PCR or laboratory-based NAAT) over a single rapid Ag test (conditional recommendation based on moderate certainty in comparative test accuracy of rapid RT-PCR or laboratory-based NAAT) over a single rapid Ag test (conditional recommendation based on moderate certainty in test accuracy of rapid Ag tests and very low certainty in comparative test accuracy of rapid RT-PCR versus rapid Ag tests) Recommendation 3 : For asymptomatic individuals with risk for exposure to SARS-CoV-2 infection, the IDSA panel suggests a single (i.e., one-time)	May 5, 2021

	standard NAAT (either rapid RT-PCR or laboratory-based NAAT) rather than a strategy of two consecutive rapid Ag tests (conditional recommendation based on moderate certainty in test accuracy of molecular testing and an evidence gap to inform the test accuracy of a strategies using repeat Ag testing) Recommendation 4 : In asymptomatic individuals with risk for exposure to SARS-CoV-2 infection, the IDSA panel suggests neither for nor against using single (i.e., one-time) rapid Ag testing over no testing (evidence gap to inform the utility of Ag testing compared to no testing) Recommendation 5 : In asymptomatic individuals with risk for exposure to SARS-CoV-2 infection, the IDSA panel suggests neither for nor against using repeat rapid Ag testing over no testing (evidence gap to inform the strategy of Ag testing compared to no testing).	
World Health Organization [206]	WHO recommends the use of Ag-RDTs that meet minimum performance requirements of \ge 80% sensitivity and \ge 97% specificity. Ag-RDTs are less sensitive than NAAT, particularly in asymptomatic populations, but careful selection of cohorts for testing can mitigate this limitation. Ag-RDTs should be prioritized for use in symptomatic individuals meeting the case definition for COVID-19, and to test asymptomatic individuals at high risk of infection, including contacts and health workers, particularly in settings where NAAT testing capacity is limited.	Oct 6, 2021
American Academy of Pediatrics [207]	Patients with symptoms consistent with COVID-19 should be tested without delay using either a NAAT (including PCR) or antigen test. The appropriate test for delayed testing of asymptomatic exposed patients is the PCR and not the rapid antigen. Testing for active SARS-CoV-2 infection using NAATs or antigen-based tests is not generally recommended for asymptomatic patients who have previously tested positive within the past 3 months.	Sep 9, 2021

References

- [1] World Health Organization. Interim Guidance: Antigen Detection in the Diagnosis of SARS-CoV-2 Infection. Updated 6 October 2021. Accessed at https://www.who.int/publications/i/item/antigendetection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays on 26 October 2021.
- [2] Dinnes J, Deeks J, Berhane S, Taylor M, Adriano A, Davenport C et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database of Systematic Reviews. 2021;2021(4).
- [3] Burog, AI, Bayona, HH, Cabaluna, IT, Maglente RR. Should rapid antigen tests be used in the diagnosis of COVID-19 in clinically-suspected patients? Evidence Summary. 15 March 2021. PSMID website. Accessed at https://www.psmid.org/rapid-antigen-test-evidence-summary/ on 26 October 2021.
- [4] Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. J ClinEpidemiol 2005; 58: 982-990.
- [5] Harbord RM, Whiting P. metandi: Meta-analysis of diagnostic accuracy using hierarchical logistic regression. Stata Journal 2009; 9: 211-229.
- [6] Patel A, Cooper N, Freeman S, Sutton A. Graphical enhancements to summary receiver operating characteristic plots to facilitate the analysis and reporting of meta-analysis of diagnostic test accuracy data. Res Synth Methods. 2021;12(1):34–44, https://doi.org/10.1002/jrsm.1439.
- [7] Freeman SC, Kerby CR, Patel A, Cooper NJ, Quinn T, Sutton AJ. Development of an interactive web-based tool to conduct and interrogate meta-analysis of diagnostic test accuracy studies: MetaDTA. BMC Medical Research Methodology 2019; 19: 81
- [8] Abdelrazik AM, Elshafie SM, Abdelaziz HM. Potential Use of Antigen-Based Rapid Test for SARS-CoV-2 in Respiratory Specimens in Low-Resource Settings in Egypt for Symptomatic Patients and High-Risk Contacts. Lab Med. 2021;52(2):e46-e49. doi:10.1093/labmed/lmaa104
- [9] Abusrewil Z, Alhudiri IM, Kaal HH, El Meshri SE, Ebrahim FO, Dalyoum T, et al. Time scale performance of rapid antigen testing for SARS-CoV-2: Evaluation of 10 rapid antigen assays. J Med Virol. 2021;(June):4–10. doi: 10.1002/jmv.27186
- [10] Adnan N, Khandker S, Haq A, Chaity M, Khalek A, Nazim A et al. Detection of SARS-CoV-2 by antigen ELISA test is highly swayed by viral load and sample storage condition. Expert Review of Anti-infective Therapy. 2021;:1-9.
- [11] Agarwal J, Das A, Pandey P, Sen M, Garg J. "David vs. Goliath": A simple antigen detection test with potential to change diagnostic strategy for SARS-CoV-2. J Infect Dev Ctries. 2021 Jul 31;15(7):904-909. doi: 10.3855/jidc.13925. PMID: 34343113.
- [12] Albert E, Torres I, Bueno F, et al. Field evaluation of a rapid antigen test (Panbio[™] COVID-19 Ag Rapid Test Device) for COVID-19 diagnosis in primary healthcare centres. Clin Microbiol Infect. 2021;27(3):472.e7-472.e10. doi:10.1016/j.cmi.2020.11.004
- [13] Alemany A, Baró B, Ouchi D, et al. Analytical and clinical performance of the panbio COVID-19 antigen-detecting rapid diagnostic test. J Infect. 2021;82(5):186-230. doi:10.1016/j.jinf.2020.12.033
- [14] Allan-Blitz LT, Klausner JD. A Real-World Comparison of SARS-CoV-2 Rapid Antigen Testing versus PCR Testing in Florida. J Clin Microbiol. 2021 Sep 20;59(10):e0110721. doi: 10.1128/JCM.01107-21. Epub 2021 Aug 4. PMID: 34346715; PMCID: PMC8451433.
- [15] Amer R, Samir M, Gaber O, EL-Deeb N, Abdelmoaty A, Ahmed A et al. Diagnostic performance of rapid antigen test for COVID-19 and the effect of viral load, sampling time, subject's clinical and laboratory parameters on test accuracy. Journal of Infection and Public Health. 2021;14(10):1446-1453.
- [16] Andreani J, Lupo J, Germi R, Laugier C, Roccon M, Larrat S et al. Evaluation of six commercial SARS-CoV-2 rapid antigen tests in nasopharyngeal swabs: Better knowledge for better patient management?. Journal of Clinical Virology. 2021;143:104947.

- [17] Asai N, Sakanashi D, Ohashi W, et al. Efficacy and validity of automated quantitative chemiluminescent enzyme immunoassay for SARS-CoV-2 antigen test from saliva specimen in the diagnosis of COVID-19. J Infect Chemother. 2021;27(7):1039-1042. doi:10.1016/j.jiac.2021.03.021
- [18] Baccani I, Morecchiato F, Chilleri C, Cervini C, Gori E, Matarrese D et al. Evaluation of Three Immunoassays for the Rapid Detection of SARS-CoV-2 antigens. Diagnostic Microbiology and Infectious Disease. 2021;101(2):115434.
- [19] Bachman C, Grant B, Anderson C, Alonzo L, Garing S, Byrnes S et al. Clinical validation of an openaccess SARS-COV-2 antigen detection lateral flow assay, compared to commercially available assays. PLOS ONE. 2021;16(8):e0256352.
- [20] Baro B, Rodo P, Ouchi D, Bordoy AE, Saya Amaro EN, Salsench SV, et al. Performance characteristics of five antigen-detecting rapid diagnostic test (Ag-RDT) for SARS-CoV-2 asymptomatic infection: a head-to-head benchmark comparison. J Infect. 2021;82(6):269–75. doi: 10.1016/j.jinf.2021.04.009.
- [21] Bello-Chavolla O, Antonio-Villa N, Fernández-Chirino L, Guerra E, Fermín-Martínez C, Márquez-Salinas A et al. Diagnostic performance and clinical implications of rapid SARS-CoV-2 antigen testing in Mexico using real-world nationwide COVID-19 registry data. PLOS ONE. 2021;16(8):e0256447.
- [22] Berger A, Nsoga M, Perez-Rodriguez F, Aad Y, Sattonnet-Roche P, Gayet-Ageron A et al. Diagnostic accuracy of two commercial SARS-CoV-2 antigen-detecting rapid tests at the point of care in community-based testing centers. PLOS ONE. 2021;16(3):e0248921.
- [23] Bianco G, Boattini M, Barbui A, Scozzari G, Riccardini F, Coggiola M et al. Evaluation of an antigenbased test for hospital point-of-care diagnosis of SARS-CoV-2 infection. Journal of Clinical Virology. 2021;139:104838.
- [24] Billaud G, Gaymard A, Lina B, Laboratoire de Virologie des HCL CNR des virus des infections respiratoires. Evaluation du Test Antigénique ABBOTT SARS-COV2 ABBOT. Lyon, France: SFM (French Society of Microbiology), 2020.
- [25] Blairon L, Wilmet A, Beukinga I, Tré-Hardy M. Implementation of rapid SARS-CoV-2 antigenic testing in a laboratory without access to molecular methods: Experiences of a general hospital. Journal of Clinical Virology. 2020;129:104472.
- [26] Bornemann L, Kaup O, Kleideiter J, Panning M, Ruprecht B, Wehmeier M. Real-life evaluation of the Sofia SARS-CoV-2 antigen assay in a large tertiary care hospital. Journal of Clinical Virology. 2021;140:104854.
- [27] Mboumba Bouassa R, Veyer D, Péré H, Bélec L. Analytical performances of the point-of-care SIENNA[™] COVID-19 Antigen Rapid Test for the detection of SARS-CoV-2 nucleocapsid protein in nasopharyngeal swabs: A prospective evaluation during the COVID-19 second wave in France. International Journal of Infectious Diseases. 2021;106:8-12.
- [28] Boum Y, Fai KN, Nikolay B, Mboringong AB, Bebell LM, Ndifon M, et al. Performance and operational feasibility of antigen and antibody rapid diagnostic tests for COVID-19 in symptomatic and asymptomatic patients in Cameroon: a clinical, prospective, diagnostic accuracy study. Lancet Infect Dis. 2021;21(8):1089–96. https://doi.org/10.1016/S1473-3099(21)00132-8
- [29] Brihn A, Chang J, OYong K, Balter S, Terashita D, Rubin Z et al. Diagnostic Performance of an Antigen Test with RT-PCR for the Detection of SARS-CoV-2 in a Hospital Setting — Los Angeles County, California, June–August 2020. MMWR Morbidity and Mortality Weekly Report. 2021;70(19):702-706.
- [30] Bruzzone B, De Pace V, Caligiuri P, Ricucci V, Guarona G, Pennati B et al. Comparative diagnostic performance of rapid antigen detection tests for COVID-19 in a hospital setting. International Journal of Infectious Diseases. 2021;107:215-218.
- [31] Bulilete O, Lorente P, Leiva A, et al. Panbio[™] rapid antigen test for SARS-CoV-2 has acceptable accuracy in symptomatic patients in primary health care. J Infect. 2021;82(3):391-398. doi:10.1016/j.jinf.2021.02.014

- [32] Caputo V, Bax C, Colantoni L, et al. Comparative analysis of antigen and molecular tests for the detection of Sars-CoV-2 and related variants: A study on 4266 samples. Int J Infect Dis. 2021;108:187-189.
- [33] Caruana G, Croxatto A, Kampouri E, Kritikos A, Opota O, Foerster M, et al. Implementing SARS-CoV-2 rapid antigen testing in the emergency ward of a Swiss university hospital: The INCREASE study. Microorganisms. 2021;9(4):798.. doi: 10.3390/microorganisms9040798.
- [34] Caruana G, Lebrun L, Aebischer O, Opota O, Urbano L, de Rham M et al. The dark side of SARS-CoV-2 rapid antigen testing: screening asymptomatic patients. New Microbes and New Infections. 2021;42:100899.
- [35] Cassuto NG, Gravier A, Colin M, Theillay A, Pires-Roteira D, Pallay S, et al. Evaluation of a SARS-CoV-2 antigen-detecting rapid diagnostic test as a self-test: Diagnostic performance and usability. J Med Virol. 2021;93(12):6686–92. doi: 10.1002/jmv.27249.
- [36] Cento V, Renica S, Matarazzo E, Antonello M, Colagrossi L, Di Ruscio F et al. Frontline Screening for SARS-CoV-2 Infection at Emergency Department Admission by Third Generation Rapid Antigen Test: Can We Spare RT-qPCR?. Viruses. 2021;13(5):818.
- [37] Cerutti F, Burdino E, Milia MG, Allice T, Gregori G, Bruzzone B, et al. Urgent need of rapid tests for SARS CoV-2 antigen detection: Evaluation of the SD-Biosensor antigen test for SARS-CoV-2. J Clin Virol. 2020;132(104654):104654.
- [38] Chaimayo, C., Kaewnaphan, B., Tanlieng, N. et al. Rapid SARS-CoV-2 antigen detection assay in comparison with real-time RT-PCR assay for laboratory diagnosis of COVID-19 in Thailand. Virol J 17, 177 (2020). https://doi.org/10.1186/s12985-020-01452-5
- [39] Chiu R, Kojima N, Mosley G, Cheng K, Pereira D, Brobeck M et al. Evaluation of the INDICAID COVID-19 Rapid Antigen Test in Symptomatic Populations and Asymptomatic Community Testing. Microbiology Spectrum. 2021;9(1).
- [40] Ciotti M, Maurici M, Pieri M, Andreoni M, Bernardini S. Performance of a rapid antigen test in the diagnosis of SARS-CoV-2 infection. J Med Virol. 2021;93(5):2988–91. doi: 10.1002/jmv.26830. Epub 2021 Feb 9. PMID: 33527409; PMCID: PMC8014551.
- [41] Courtellemont L, Guinard J, Guillaume C, Giaché S, Rzepecki V, Seve A, et al. High performance of a novel antigen detection test on nasopharyngeal specimens for diagnosing SARS-CoV-2 infection. J Med Virol. 2021;93(5):3152–7. doi: 10.1002/jmv.26896.
- [42] Denina M, Giannone V, Curtoni A, Zanotto E, Garazzino S, Urbino A et al. Can we trust in Sars-CoV-2 rapid antigen testing? Preliminary results from a paediatric cohort in the emergency department. Irish Journal of Medical Science (1971 -). 2021;.
- [43] Diao B, Wen K, Zhang J, Chen J, Han C, Chen Y, et al. Accuracy of a nucleocapsid protein antigen rapid test in the diagnosis of SARS-CoV-2 infection. Clin Microbiol Infect. 2021;27(2):289.e1-289.e4. doi: 10.1016/j.cmi.2020.09.057. Epub 2020 Oct 5. PMID: 33031947; PMCID: PMC7534827.
- [44] Dierks S, Bader O, Schwanbeck J, Groß U, Weig M, Mese K et al. Diagnosing SARS-CoV-2 with Antigen Testing, Transcription-Mediated Amplification and Real-Time PCR. Journal of Clinical Medicine. 2021;10(11):2404.
- [45] González-Donapetry P, García-Clemente P, Bloise I, García-Sánchez C, Sánchez Castellano M, Romero M et al. Think of the Children. Pediatric Infectious Disease Journal. 2021;40(5):385-388.
- [46] Eleftheriou I, Dasoula F, Dimopoulou D, Lebessi E, Serafi E, Spyridis N, et al. Real-life evaluation of a COVID-19 rapid antigen detection test in hospitalized children. J Med Virol. 2021;93(10):6040–4. 10.1002/jmv.27149
- [47] Escrivá B, Mochón M, González R, García C, Pla A, Ricart A et al. "The effectiveness of rapid antigen test-based for SARS-CoV-2 detection in nursing homes in Valencia, Spain". Journal of Clinical Virology. 2021;143:104941.
- [48] Favresse J, Gillot C, Oliveira M, Cadrobbi J, Elsen M, Eucher C, Laffineur K, Rosseels C, Van Eeckhoudt S, Nicolas JB, Morimont L, Dogné JM, Douxfils J. Head-to-Head Comparison of Rapid

and Automated Antigen Detection Tests for the Diagnosis of SARS-CoV-2 Infection. J Clin Med. 2021 Jan 13;10(2):265. doi: 10.3390/jcm10020265. PMID: 33450853; PMCID: PMC7828347.

- [49] Fenollar F, Bouam A, Ballouche M, Fuster L, Prudent E, Colson P et al. Evaluation of the Panbio COVID-19 Rapid Antigen Detection Test Device for the Screening of Patients with COVID-19. Journal of Clinical Microbiology. 2021;59(2).
- [50] Ferté T, Ramel V, Cazanave C, Lafon M, Bébéar C, Malvy D et al. Accuracy of COVID-19 rapid antigenic tests compared to RT-PCR in a student population: The StudyCov study. Journal of Clinical Virology. 2021;141:104878.
- [51] Garciá-Fiñana M, Hughes DM, Cheyne CP, Burnside G, Stockbridge M, Fowler TA, et al. Performance of the Innova SARS-CoV-2 antigen rapid lateral flow test in the Liverpool asymptomatic testing pilot: Population based cohort study. BMJ. 2021;374:n1367. doi: 10.1136/bmj.n1637
- [52] Ford L, Lee C, Pray I, Cole D, Bigouette J, Abedi G et al. Epidemiologic Characteristics Associated With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Antigen-Based Test Results, Real-Time Reverse Transcription Polymerase Chain Reaction (rRT-PCR) Cycle Threshold Values, Subgenomic RNA, and Viral Culture Results From University Testing. Clinical Infectious Diseases. 2021;73(6):e1348-e1355.
- [53] Fourati S, Audureau E, Chevaliez S, Pawlotsky JM. Évaluation de la performance diagnostique des tests rapides d'orientation diagnostique antigéniques COVID-19. France: AP-HP Hopitaux universitaires Henri-Mondor, 2020.
- [54] Fourati S, Langendorf C, Audureau E, et al. Performance of six rapid diagnostic tests for SARS-CoV-2 antigen detection and implications for practical use. J Clin Virol. 2021;142:104930. doi:10.1016/j.jcv.2021.104930
- [55] Frediani JK, Levy JM, Rao A, et al. Multidisciplinary assessment of the Abbott BinaxNOW SARS-CoV-2 point-of-care antigen test in the context of emerging viral variants and self-administration. Sci Rep. 2021;11(1):14604. Published 2021 Jul 16. doi:10.1038/s41598-021-94055-1
- [56] Pérez-García F, Romanyk J, Moya Gutiérrez H, Labrador Ballestero A, Pérez Ranz I, González Arroyo J et al. Comparative evaluation of Panbio and SD Biosensor antigen rapid diagnostic tests for COVID-19 diagnosis. Journal of Medical Virology. 2021;93(9):5650-5654.
- [57] Gili A, Paggi R, Russo C, Cenci E, Pietrella D, Graziani A, et al. Evaluation of Lumipulse® G SARS-CoV-2 antigen assay automated test for detecting SARS-CoV-2 nucleocapsid protein (NP) in nasopharyngeal swabs for community and population screening. Int J Infect Dis. 2021;105:391–6. doi: 10.1016/j.ijid.2021.02.098.
- [58] Gremmels H, Winkel BMF, Schuurman R, Rosingh A, Rigter NAM, Rodriguez O, et al. Real-life validation of the PanbioTM COVID-19 antigen rapid test (Abbott) in community-dwelling subjects with symptoms of potential SARS-CoV-2 infection. EClinicalMedicine. 2021;31(100677):100677.DOI: doi.org/10.1016/j.eclinm.2020.100677.
- [59] Gupta A, Khurana S, Das R, Srigyan D, Singh A, Mittal A, et al. Rapid chromatographic immunoassay-based evaluation of COVID-19: A cross-sectional, diagnostic test accuracy study & its implications for COVID-19 management in India. Indian J Med Res. 2021;153(1 & 2):126–31. DOI: 10.4103/ijmr.IJMR_3305_20.
- [60] Halfon P, Penaranda G, Khiri H, Garcia V, Drouet H, Philibert P et al. An optimized stepwise algorithm combining rapid antigen and RT-qPCR for screening of COVID-19 patients. PLOS ONE. 2021;16(9):e0257817.
- [61] Hartard C, Berger S, Josse T, Schvoerer E, Jeulin H. Performance evaluation of an automated SARS-CoV-2 Ag test for the diagnosis of COVID-19 infection on nasopharyngeal swabs. Clin Chem Lab Med. 2021;59(12):2003–9.. doi: 10.1515/cclm-2021-0569.
- [62] Häuser, F., Sprinzl, M.F., Dreis, K.J. et al. Evaluation of a laboratory-based high-throughput SARS-CoV-2 antigen assay for non-COVID-19 patient screening at hospital admission. Med Microbiol Immunol 210, 165–171 (2021). https://doi.org/10.1007/s00430-021-00706-5

- [63] Herrera V, Hsu V, Adewale A, Johnson L, Hendrix T, Kuhlman J et al. Testing Healthcare Workers Exposed to COVID19 using Rapid Antigen Detection. 2020;.
- [64] Hirotsu Y, Maejima M, Shibusawa M, Nagakubo Y, Hosaka K, Amemiya K, et al. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed patients. Int J Infect Dis. 2020;99:397– 402. doi: 10.1016/j.ijid.2020.08.029. Epub 2020 Aug 12. PMID: 32800855; PMCID: PMC7422837.
- [65] Holzner C, Pabst D, Anastasiou O, Dittmer U, Manegold R, Risse J et al. SARS-CoV-2 rapid antigen test: Fast-safe or dangerous? An analysis in the emergency department of an university hospital. Journal of Medical Virology. 2021;93(9):5323-5327.
- [66] Homza M, Zelena H, Janosek J, Tomaskova H, Jezo E, Kloudova A et al. Performance of Seven SARS-CoV-2 Self-Tests Based on Saliva, Anterior Nasal and Nasopharyngeal Swabs Corrected for Infectiousness in Real-Life Conditions: A Cross-Sectional Test Accuracy Study. Diagnostics. 2021;11(9):1567.
- [67] Ifko M, Skvarc M. Use of immunochromatographic sars-cov-2 antigen testing in eight long-term care facilities for the elderly. Healthc. 2021;9(7):2–7. doi: 10.3390/healthcare9070868
- [68] Igloi Z, Velzing J, van Beek J, van de Vijver D, Aron G, Ensing R, et al. Clinical evaluation of Roche SD Biosensor rapid antigen test for SARS-CoV-2 in municipal health service testing site, the Netherlands. Emerg Infect Dis. 2021;27(5):1323–9. doi: 10.3201/eid2705.204688.
- [69] Iqbal B, Khan M, Shah N, Dawood M, Jehanzeb V, Shafi M. Comparison of SARS-CoV-2 antigen electrochemiluminescence immunoassay to RT-PCR assay for laboratory diagnosis of COVID-19 in Peshawar. Diagnosis. 2021;0(0).
- [70] Ishii T, Sasaki M, Yamada K, Kato D, Osuka H, Aoki K, et al. Immunochromatography and chemiluminescent enzyme immunoassay for COVID-19 diagnosis. J Infect Chemother. 2021;27(6):915–8.. doi: 10.1016/j.jiac.2021.02.025.
- [71] Jääskeläinen AE, Ahava MJ, Jokela P, Szirovicza L, Pohjala S, Vapalahti O, et al. Evaluation of three rapid lateral flow antigen detection tests for the diagnosis of SARS-CoV-2 infection. J Clin Virol. 2021;137(104785):104785 doi: 10.1016/j.jcv.2021.104785.
- [72] James AE, Gulley T, Kothari A, Holder K, Garner K, Patil N. Performance of the BinaxNOW coronavirus disease 2019 (COVID-19) Antigen Card test relative to the severe acute respiratory coronavirus virus 2 (SARS-CoV-2) real-time reverse transcriptase polymerase chain reaction (rRT-PCR) assay among symptomatic and asymptomatic healthcare employees. Infect Control Hosp Epidemiol. 2021;1–3.. doi: 10.1017/ice.2021.20.
- [73] Jegerlehner S, Suter-Riniker F, Jent P, Bittel P, Nagler M. Diagnostic accuracy of a SARS-CoV-2 rapid antigen test in real-life clinical settings: Antigen tests in real-life clinical settings. Int J Infect Dis. 2021;109(January):118–22. doi: https://doi.org/10.1016/j.ijid.2021.07.01
- [74] Jung C, Levy C, Varon E, et al. Diagnostic Accuracy of SARS-CoV-2 Antigen Detection Test in Children: A Real-Life Study. Front Pediatr. 2021;9:647274. Published 2021 Jul 15. doi:10.3389/fped.2021.647274
- [75] Kahn M, Schuierer L, Bartenschlager C, Zellmer S, Frey R, Freitag M et al. Performance of antigen testing for diagnosis of COVID-19: a direct comparison of a lateral flow device to nucleic acid amplification based tests. BMC Infectious Diseases. 2021;21(1).
- [76] Kanaujia R, Ghosh A, Mohindra R, et al. Rapid antigen detection kit for the diagnosis of SARS-CoV-2 - are we missing asymptomatic patients? [published online ahead of print, 2021 Jul 19]. Indian J Med Microbiol. 2021;S0255-0857(21)04168-2. doi:10.1016/j.ijmmb.2021.07.003
- [77] Karon BS, Donato LJ, Bridgeman AR, Blommel JH, Kipp B, Maus A, et al. Analytical Sensitivity and Specificity of Four Point of Care Rapid Antigen Diagnostic Tests for SARS-CoV-2 Using Real-Time Quantitative PCR, Quantitative Droplet Digital PCR, and a Mass Spectrometric Antigen Assay as Comparator Methods. Clin Chem. 2021;9:1–9. doi: 10.1093/clinchem/hvab138

- [78] Kim D, Lee J, Bal J, Seo S, Chong C, Lee J et al. Development and Clinical Evaluation of an Immunochromatography-Based Rapid Antigen Test (GenBody[™] COVAG025) for COVID-19 Diagnosis. Viruses. 2021;13(5):796.
- [79] Mathur P, Kiro V, Gupta A, Singh P, Sharad N, Khurana S et al. Evaluation of COVID-19 antigen fluorescence immunoassay test for rapid detection of SARS-CoV-2. Journal of Global Infectious Diseases. 2021;13(2):91.
- [80] Klein JAF, Krüger LJ, Tobian F, Gaeddert M, Lainati F, Schnitzler P, et al. Head-to-head performance comparison of self-collected nasal versus professional-collected nasopharyngeal swab for a WHOlisted SARS-CoV-2 antigen-detecting rapid diagnostic test. Med Microbiol Immunol [Internet]. 2021;210(4):181–6. Available from: https://doi.org/10.1007/s00430-021-00710-9 doi: 10.1007/s00430-021-00710-9
- [81] Kobayashi R, Murai R, Moriai M, Nirasawa S, Yonezawa H, Kondoh T, et al. Evaluation of false positives in the SARS-CoV-2 quantitative antigen test. J Infect Chemother. 2021;27(10):1477–81. doi: 10.1016/j.jiac.2021.06.019.
- [82] Koeleman J, Brand H, de Man S, Ong D. Clinical evaluation of rapid point-of-care antigen tests for diagnosis of SARS-CoV-2 infection. European Journal of Clinical Microbiology & Infectious Diseases. 2021;40(9):1975-1981.
- [83] Kolwijck E, Brouwers-Boers M, Broertjes J, van Heeswijk K, Runderkamp N, Meijer A et al. Validation and implementation of the Panbio COVID-19 Ag rapid test for the diagnosis of SARS-CoV-2 infection in symptomatic hospital Trained personnels. Infection Prevention in Practice. 2021;3(2):100142.
- [84] Korenkov M, Poopalasingam N, Madler M, Vanshylla K, Eggeling R, Wirtz M et al. Evaluation of a Rapid Antigen Test To Detect SARS-CoV-2 Infection and Identify Potentially Infectious Individuals. Journal of Clinical Microbiology. 2021;59(9).
- [85] Krüger L, Gaeddert M, Köppel L, Brümmer L, Gottschalk C, Miranda I et al. Evaluation of the accuracy, ease of use and limit of detection of novel, rapid, antigen-detecting point-of-care diagnostics for SARS-CoV-2. 2020;.
- [86] Krüger L, Gaeddert M, Tobian F, Lainati F, Gottschalk C, Klein J et al. The Abbott PanBio WHO emergency use listed, rapid, antigen-detecting point-of-care diagnostic test for SARS-CoV-2— Evaluation of the accuracy and ease-of-use. PLOS ONE. 2021;16(5):e0247918.
- [87] Krüger L, Klein J, Tobian F, Gaeddert M, Lainati F, Klemm S et al. Evaluation of accuracy, exclusivity, limit-of-detection and ease-of-use of LumiraDx[™]: An antigen-detecting point-of-care device for SARS-CoV-2. Infection. 2021;.
- [88] Krüttgen A, Cornelissen C, Dreher M, Hornef M, Imöhl M, Kleines M. Comparison of the SARS-CoV-2 Rapid antigen test to the real star Sars-CoV-2 RT PCR kit. Journal of Virological Methods. 2021;288:114024.
- [89] Kurihara Y, Kiyasu Y, Akashi Y, Takeuchi Y, Narahara K, Mori S, et al. The evaluation of a novel digital immunochromatographic assay with silver amplification to detect SARS-CoV-2. J Infect Chemother. 2021;27(10):1493–7. doi: 10.1016/j.jiac.2021.07.006
- [90] Kweon O, Lim Y, Kim H, Choi Y, Kim M, Choi S et al. Evaluation of rapid SARS-CoV-2 antigen tests, AFIAS COVID-19 Ag and ichroma COVID-19 Ag, with serial nasopharyngeal specimens from COVID-19 patients. PLOS ONE. 2021;16(4):e0249972.
- [91] Kyritsi M, Vontas A, Voulgaridi I, Matziri A, Komnos A, Babalis D et al. Rapid Test Ag 2019-nCoV (PROGNOSIS, BIOTECH, Larissa, Greece); Performance Evaluation in Hospital Setting with Real Time RT-PCR. International Journal of Environmental Research and Public Health. 2021;18(17):9151.
- [92] Lambert-Niclot S, Cuffel A, Le Pape S, Vauloup-Fellous C, Morand-Joubert L, Roque-Afonso A-M, et al. Evaluation of a rapid diagnostic assay for detection of SARS-CoV-2 antigen in nasopharyngeal swabs. J Clin Microbiol [Internet]. 2020;58(8). Available from: http://dx.doi.org/10.1128/JCM.00977-20.

- [93] Landaas ET, Storm ML, Tollånes MC, Barlinn R, Kran A-MB, Bragstad K, et al. Diagnostic performance of a SARS-CoV-2 rapid antigen test in a large, Norwegian cohort. J Clin Virol. 2021;137(104789):104789. doi: 10.1016/j.jcv.2021.104789.
- [94] Leixner G, Voill-Glaninger A, Bonner E, Kreil A, Zadnikar R, Viveiros A. Evaluation of the AMP SARS-CoV-2 rapid antigen test in a hospital setting. International Journal of Infectious Diseases. 2021;108:353-356.
- [95] Leli C, Di Matteo L, Gotta F, et al. Performance of a SARS-CoV-2 antigen rapid immunoassay in patients admitted to the emergency department. Int J Infect Dis. 2021;110:135-140. doi:10.1016/j.ijid.2021.07.043
- [96] L'Huillier A, Lacour M, Sadiku D, Gadiri M, De Siebenthal L, Schibler M et al. Diagnostic Accuracy of SARS-CoV-2 Rapid Antigen Detection Testing in Symptomatic and Asymptomatic Children in the Clinical Setting. Journal of Clinical Microbiology. 2021;59(9).
- [97] Linares M, Pérez-Tanoira R, Carrero A, Romanyk J, Pérez-García F, Gómez-Herruz P et al. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms. Journal of Clinical Virology. 2020;133:104659.
- [98] Lindner AK, Nikolai O, Rohardt C, Burock S, Hülso C, Bölke A, et al. Head-to-head comparison of SARS-CoV-2 antigen-detecting rapid test with professional-collected nasal versus nasopharyngeal swab. Eur Respir J. 2021 May 6;57(5):2004430. doi: 10.1183/13993003.04430-2020.
- [99] Lindner AK, Nikolai O, Rohardt C, Kausch F, Wintel M, Gertler M, et al.. Diagnostic accuracy and feasibility of patient self-testing with a SARS-CoV-2 antigen-detecting rapid test. J Clin Virol. 2021 Aug;141:104874. doi: 10.1016/j.jcv.2021.104874.
- [100] Liotti F, Menchinelli G, Lalle E, Palucci I, Marchetti S, Colavita F et al. Performance of a novel diagnostic assay for rapid SARS-CoV-2 antigen detection in nasopharynx samples. Clinical Microbiology and Infection. 2021;27(3):487-488.
- [101] Mak G, Cheng P, Lau S, Wong K, Lau C, Lam E et al. Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. Journal of Clinical Virology. 2020;129:104500.
- [102] Maniscalco M, Ambrosino P, Ciullo A, Fuschillo S, Valente V, Gaudiosi C et al. A Rapid Antigen Detection Test to Diagnose SARS-CoV-2 Infection Using Exhaled Breath Condensate by A Modified Inflammacheck® Device. Sensors. 2021;21(17):5710.
- [103] Martín-Sánchez V, Fernández-Villa T, Carvajal Urueña A, Rivero Rodríguez A, Reguero Celada S, Sánchez Antolín G et al. Role of Rapid Antigen Testing in Population-Based SARS-CoV-2 Screening. Journal of Clinical Medicine. 2021;10(17):3854.
- [104] Matsuda EM, de Campos IB, de Oliveira IP, Colpas DR, Carmo AMDS, Brígido LFM. Field evaluation of COVID-19 antigen tests versus RNA based detection: Potential lower sensitivity compensated by immediate results, technical simplicity, and low cost. J Med Virol. 2021 Jul;93(7):4405-4410. doi: 10.1002/jmv.26985. Epub 2021 Apr 8. PMID: 33788270; PMCID: PMC8250877.
- [105] Mboma O, Rieke E, Ahmad-Nejad P, Wirth S, Aydin M. Diagnostic Performance of SARS-CoV-2 Rapid Antigen Test in a Large, German Cohort. Children (Basel). 2021 Aug 8;8(8):682. doi: 10.3390/children8080682. PMID: 34438573; PMCID: PMC8394520.
- [106] McKay S, Tobolowsky F, Moritz E, Hatfield K, Bhatnagar A, LaVoie S et al. Performance Evaluation of Serial SARS-CoV-2 Rapid Antigen Testing During a Nursing Home Outbreak. Annals of Internal Medicine. 2021;174(7):945-951.
- [107] Merino-Amador P, González-Donapetry P, Domínguez-Fernández M, González-Romo F, Sánchez-Castellano M, Seoane-Estevez A et al. Clinitest rapid COVID-19 antigen test for the diagnosis of SARS-CoV-2 infection: A multicenter evaluation study. Journal of Clinical Virology. 2021;143:104961.
- [108] Mertens P, De Vos N, Martiny D, Jassoy C, Mirazimi A, Cuypers L, et al. Development and potential usefulness of the COVID-19 Ag Respi-Strip diagnostic assay in a pandemic context. Front Med (Lausanne). 2020;7:225.. doi: 10.3389/fmed.2020.00225. PMID: 32574326; PMCID: PMC7227790.

- [109] Möckel M, Corman V, Stegemann M, Hofmann J, Stein A, Jones T et al. SARS-CoV-2 antigen rapid immunoassay for diagnosis of COVID-19 in the emergency department. Biomarkers. 2021;26(3):213-220.
- [110] Fernandez-Montero A, Argemi J, Rodríguez J, Ariño A, Moreno-Galarraga L. Validation of a Rapid Antigen Test as a Screening Tool for SARS-CoV-2 Infection in Asymptomatic Populations. Sensitivity, Specificity and Predictive Values. SSRN Electronic Journal. 2021;.
- [111] Muhi S, Tayler N, Hoang T, et al. Multi-site assessment of rapid, point-of-care antigen testing for the diagnosis of SARS-CoV-2 infection in a low-prevalence setting: A validation and implementation study. Lancet Reg Health West Pac. 2021;9:100115. doi:10.1016/j.lanwpc.2021.100115
- [112] Nagura-Ikeda M, Imai K, Tabata S, Miyoshi K, Murahara N, Mizuno T, et al. Clinical Evaluation of Self-Collected Saliva by Quantitative Reverse Transcription-PCR (RT-qPCR), Direct RT-qPCR, Reverse Transcription-Loop-Mediated Isothermal Amplification, and a Rapid Antigen Test To Diagnose COVID-19. J Clin Microbiol. 2020 Aug 24;58(9):e01438-20. doi: 10.1128/JCM.01438-20. PMID: 32636214; PMCID: PMC7448663.
- [113] Nalumansi A, Lutalo T, Kayiwa J, Watera C, Balinandi S, Kiconco J, et al. Field evaluation of the performance of a SARS-CoV-2 antigen rapid diagnostic test in Uganda using nasopharyngeal samples. Int J Infect Dis. 2021;104:282–6. doi: 10.1016/j.ijid.2020.10.073. Epub 2020 Oct 30. PMID: 33130198; PMCID: PMC7836828.
- [114] Nash B, Badea A, Reddy A, Bosch M, Salcedo N, Gomez A et al. Validating and modeling the impact of high-frequency rapid antigen screening on COVID-19 spread and outcomes. 2020;.
- [115] Nikolai O, Rohardt C, Tobian F, Junge A, Corman V, Jones T et al. Anterior nasal versus nasal midturbinate sampling for a SARS-CoV-2 antigen-detecting rapid test: does localisation or professional collection matter?. Infectious Diseases. 2021;:1-6.
- [116] Nomoto H, Yamamoto K, Yamada G, Suzuki M, Kinoshita N, Takasaki J et al. Time-course evaluation of the quantitative antigen test for severe acute respiratory syndrome coronavirus 2: The potential contribution to alleviating isolation of COVID-19 patients. Journal of Infection and Chemotherapy. 2021;27(11):1669-1673.
- [117] Nordgren J, Sharma S, Olsson H, Jämtberg M, Falkeborn T, Svensson L et al. SARS-CoV-2 rapid antigen test: High sensitivity to detect infectious virus. Journal of Clinical Virology. 2021;140:104846.
- [118] Nörz D, Olearo F, Perisic S, Bauer M, Riester E, Schneider T et al. Multicenter Evaluation of a Fully Automated High-Throughput SARS-CoV-2 Antigen Immunoassay. Infectious Diseases and Therapy. 2021;.
- [119] Ngo Nsoga MT, Kronig I, Perez Rodriguez FJ, et al. Diagnostic accuracy of Panbio rapid antigen tests on oropharyngeal swabs for detection of SARS-CoV-2. PLoS One. 2021;16(6):e0253321. Published 2021 Jun 24. doi:10.1371/journal.pone.0253321
- [120] Oh S-M, Jeong H, Chang E, Choe PG, Kang CK, Park WB, et al. Clinical application of the standard Q COVID-19 Ag test for the detection of SARS-CoV-2 infection. J Korean Med Sci. 2021;36(14). doi: 10.3346/jkms.2021.36.e101.
- [121] Okoye NC, Barker AP, Curtis K, Orlandi RR, Snavely EA, Wright C, et al. Performance Characteristics of BinaxNOW COVID-19 Antigen Card for Screening Asymptomatic Individuals in a University Setting. J Clin Microbiol. 2021 Mar 19;59(4):e03282-20. doi: 10.1128/JCM.03282-20.
- [122] Olearo F, Nörz D, Heinrich F, Sutter JP, Roedl K, Schultze A, et al.. Handling and accuracy of four rapid antigen tests for the diagnosis of SARS-CoV-2 compared to RT-qPCR. J Clin Virol. 2021 Apr;137:104782. doi: 10.1016/j.jcv.2021.104782.
- [123] Orsi A, Pennati BM, Bruzzone B, Ricucci V, Ferone D, Barbera P, et al. On-field evaluation of a ultrarapid fluorescence immunoassay as a frontline test for SARS-CoV-2 diagnostic. J Virol Methods. 2021;295(114201):114201.. doi: 10.1016/j.jviromet.2021.114201. Epub 2021 May 28. PMID: 34058287; PMCID: PMC8161776.

- [124] Osmanodja B, Budde K, Zickler D, Naik M, Hofmann J, Gertler M et al. Accuracy of a Novel SARS-CoV-2 Antigen-Detecting Rapid Diagnostic Test from Standardized Self-Collected Anterior Nasal Swabs. Journal of Clinical Medicine. 2021;10(10):2099.
- [125] Osterman A, Baldauf HM, Eletreby M, et al. Evaluation of two rapid antigen tests to detect SARS-CoV-2 in a hospital setting. Med Microbiol Immunol. 2021;210(1):65-72. doi:10.1007/s00430-020-00698-8
- [126] Osterman A, Iglhaut M, Lehner A, Späth P, Stern M, Autenrieth H et al. Comparison of four commercial, automated antigen tests to detect SARS-CoV-2 variants of concern. Medical Microbiology and Immunology. 2021;.
- [127] Paul D, Gupta A, Rooge S, Gupta E. Performance evaluation of automated chemiluminescence immunoassay based antigen detection – Moving towards more reliable ways to predict SARS-CoV-2 infection. Journal of Virological Methods. 2021;298:114299.
- [128] Peña M, Ampuero M, Garcés C, Gaggero A, García P, Velasquez M et al. Performance of SARS-CoV-2 rapid antigen test compared with real-time RT-PCR in asymptomatic individuals. International Journal of Infectious Diseases. 2021;107:201-204.
- [129] Peña-Rodríguez M, Viera-Segura O, García-Chagollán M, Zepeda-Nuño JS, Muñoz-Valle JF, Mora-Mora J, et al. Performance evaluation of a lateral flow assay for nasopharyngeal antigen detection for SARS-CoV-2 diagnosis. J Clin Lab Anal. 2021;35(5):e23745. https://doi.org/10.1002/jcla.23745
- [130] Public Health England. Preliminary report from the Joint PHE Porton Down & University of Oxford SARS-CoV-2 test development and validation cell : Rapid evaluation of Lateral Flow Viral Antigen detection devices (LFDs) for mass community testing : 2020;(November):2–7.
- [131] Pickering S, Batra R, Merrick B, Snell L, Nebbia G, Douthwaite S et al. Comparative performance of SARS-CoV-2 lateral flow antigen tests and association with detection of infectious virus in clinical specimens: a single-centre laboratory evaluation study. The Lancet Microbe. 2021;2(9):e461-e471.
- [132] Pilarowski G, Marquez C, Rubio L, Peng J, Martinez J, Black D, et al. Field performance and public health response using the BinaxNOW TM Rapid SARS-CoV-2 antigen detection assay during community-based testing. Clin Infect Dis. 2020;73(9):e3098–101.
- [133] Pollock NR, Jacobs JR, Tran K, Cranston AE, Smith S, O'Kane CY, et al. Performance and implementation evaluation of the Abbott BinaxNOW rapid antigen test in a high-throughput drivethrough community testing site in Massachusetts. J Clin Microbiol. 2021;59(5). Available from: http://dx.doi.org/10.1128/JCM.00083-21
- [134] Pollock NR, Tran K, Jacobs JR, Cranston AE, Smith S, O'Kane CY, et al. Performance and operational evaluation of the Access Bio CareStart rapid Antigen test in a high-throughput drivethrough community testing site in Massachusetts. Open Forum Infect Dis. 2021;8(7):ofab243. https://doi.org/10.1093/ofid/ofab243
- [135] Porte L, Legarraga P, Vollrath V, Aguilera X, Munita J, Araos R et al. Evaluation of a novel antigenbased rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. International Journal of Infectious Diseases. 2020;99:328-333.
- [136] Porte L, Legarraga P, Iruretagoyena M, Vollrath V, Pizarro G, Munita J et al. Evaluation of two fluorescence immunoassays for the rapid detection of SARS-CoV-2 antigen—new tool to detect infective COVID-19 patients. PeerJ. 2021;9:e10801.
- [137] Pray IW, Ford L, Cole D, Lee C, Bigouette JP, Abedi GR, et al. Performance of an antigen-based test for asymptomatic and symptomatic SARS-CoV-2 testing at two university campuses - Wisconsin, September-October 2020. MMWR Morb Mortal Wkly Rep. 2021;69(5152):1642–7 doi: http://dx.doi.org/10.15585/mmwr.mm695152a3
- [138] Prince-Guerra JL, Almendares O, Nolen LD, Gunn JKL, Dale AP, Buono SA, et al. Evaluation of Abbott BinaxNOW rapid antigen test for SARS-CoV-2 infection at two community-based testing sites - Pima County, Arizona, November 3-17, 2020. MMWR Morb Mortal Wkly Rep. 2021;70(3):100–5. doi: http://dx.doi.org/10.15585/mmwr.mm7003e3

- [139] Ristić M, Nikolić N, Čabarkapa V, Turkulov V, Petrović V. Validation of the STANDARD Q COVID-19 antigen test in Vojvodina, Serbia. PLoS One. 2021;16(2 February):1–13. doi: 10.1371/journal.pone.0247606
- [140] Rottenstreich A, Zarbiv G, Kabiri D, Porat S, Sompolinsky Y, Reubinoff B, et al. Rapid antigen detection testing for universal screening for severe acute respiratory syndrome coronavirus 2 in women admitted for delivery. Am J Obstet Gynecol. 2021;224(5):539–40. doi: 10.1016/j.ajog.2021.01.002
- [141] Carbonell-Sahuquillo S, Lázaro-Carreño MI, Camacho J, Barrés-Fernández A, Albert E, Torres I, et al. Evaluation of a rapid antigen detection test (PanbioTM COVID-19 Ag Rapid Test Device) as a point-of-care diagnostic tool for COVID-19 in a pediatric emergency department. J Med Virol. 2021;93(12):6803–7. doi: 10.1002/jmv.27220
- [142] Salvagno G, Gianfilippi G, Fiorio G, Pighi L, De Nitto S, Henry B et al. Performance of Fujirebio Espline SARS-CoV-2 Rapid Antigen Test for Identifying Potentially Infectious Individuals. SSRN Electronic Journal. 2021;.
- [143] Schildgen V, Demuth S, Lüsebrink J, Schildgen O. Limits and opportunities of SARS-CoV-2 antigen rapid tests: An experienced-based perspective. Pathogens. 2021;10(1):38. doi: Schildgen V, Demuth S, Lüsebrink J, Schildgen O. Limits and opportunities of SARS-CoV-2 antigen rapid tests: An experienced-based perspective. Pathogens. 2021;10(1):38.
- [144] Schuit E, Veldhuijzen IK, Venekamp RP, et al. Diagnostic accuracy of rapid antigen tests in asymptomatic and presymptomatic close contacts of individuals with confirmed SARS-CoV-2 infection: cross sectional study. BMJ. 2021;374:n1676. Published 2021 Jul 27. doi:10.1136/bmj.n1676
- [145] Scohy A, Anantharajah A, Bodéus M, Kabamba-Mukadi B, Verroken A, Rodriguez-Villalobos H. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J Clin Virol. 2020;129(104455):104455. doi: doi.org/10.1016/j.jcv.2020.104455
- [146] Seitz T, Schindler S, Winkelmeyer P, Zach B, Wenisch C, Zoufaly A, et al. Evaluation of rapid antigen tests based on saliva for the detection of SARS-CoV-2. J Med Virol. 2021;93(7):4161–2. doi: 10.1002/jmv.26983
- [147] Seynaeve Y, Heylen J, Fontaine C, et al. Evaluation of Two Rapid Antigenic Tests for the Detection of SARS-CoV-2 in Nasopharyngeal Swabs. J Clin Med. 2021;10(13):2774. Published 2021 Jun 24. doi:10.3390/jcm10132774
- [148] Shah M, Salvatore P, Ford L, Kamitani E, Whaley M, Mitchell K et al. Performance of Repeat BinaxNOW Severe Acute Respiratory Syndrome Coronavirus 2 Antigen Testing in a Community Setting, Wisconsin, November 2020–December 2020. Clinical Infectious Diseases. 2021;73(Supplement_1):S54-S57.
- [149] Shaikh N, Friedlander E, Tate P, Liu H, Chang C, Wells A et al. Performance of a Rapid SARS-CoV-2 Antigen Detection Assay in Symptomatic Children. Pediatrics. 2021;148(3):e2021050832.
- [150] Shrestha B, Neupane AK, Pant S, Shrestha A, Bastola A, Rajbhandari B, et al. Sensitivity and specificity of lateral flow antigen test kits for COVID-19 in asymptomatic population of Quarantine centre of Province 3. Kathmandu Univ Med J (KUMJ). 2020;18(2):36–9.
- [151] Soleimani R, Deckers C, Huang T, Bogaerts P, Evrard S, Wallemme I et al. Rapid COVID-19 antigenic tests: Usefulness of a modified method for diagnosis. Journal of Medical Virology. 2021;93(9):5655-5659.
- [152] Sood N, Shetgiri R, Rodriguez A, Jimenez D, Treminino S, Daflos A, et al. Evaluation of the Abbott BinaxNOW rapid antigen test for SARS-CoV-2 infection in children: Implications for screening in a school setting. PLoS One. 2021;16(4):e0249710. doi: 10.1371/journal.pone.0249710.
- [153] Stohr JJJM, Zwart VF, Goderski G, Meijer A, Nagel-Imming CRS, Kluytmans-van den Bergh MFQ, et al. Self-testing for the detection of SARS-CoV-2 infection with rapid antigen tests for people with suspected COVID-19 in the community. Clin Microbiol Infect [Internet]. 2021; Available from: http://dx.doi.org/10.1016/j.cmi.2021.07.039.

- [154] Stokes NL, Reed KA, Berbari EF, Vetter S, Binnicker MJ. Evaluation of the BinaxNOW COVID-19 rapid antigen test in an asymptomatic patient population undergoing pre-procedural screening. J Clin Microbiol. 2021;JCM0165021.
- [155] Stokes W, Berenger BM, Portnoy D, Scott B, Szelewicki J, Singh T, et al. Clinical performance of the Abbott Panbio with nasopharyngeal, throat, and saliva swabs among symptomatic individuals with COVID-19. Eur J Clin Microbiol Infect Dis. 2021;40(8):1721–6. doi: 10.1007/s10096-021-04202-9.
- [156] Takeda Y, Mori M, Omi K. SARS-CoV-2 qRT-PCR Ct value distribution in Japan and possible utility of rapid antigen testing kit [Internet]. bioRxiv. 2020. Available from: http://dx.doi.org/10.1101/2020.06.16.20131243
- [157] Thakur P, Saxena S, Manchanda V, Rana N, Goel R, Arora R. Utility of Antigen-Based Rapid Diagnostic Test for Detection of SARS-CoV-2 Virus in Routine Hospital Settings. Laboratory Medicine. 2021;.
- [158] Torres I, Poujois S, Albert E, Colomina J, Navarro D. Evaluation of a rapid antigen test (Panbio[™] COVID-19 Ag rapid test device) for SARS-CoV-2 detection in asymptomatic close contacts of COVID-19 patients. Clin Microbiol Infect. 2021 Apr;27(4):636.e1-636.e4. doi: 10.1016/j.cmi.2020.12.022.
- [159] Tsai S, Lee W, Chen P, Hung S. Real world clinical performance of SARS-CoV-2 rapid antigen tests in suspected COVID-19 cases in Taiwan. Journal of the Formosan Medical Association. 2021;120(11):2042-2043.
- [160] Turcato G, Zaboli A, Pfeifer N, Ciccariello L, Sibilio S, Tezza G, et al. Clinical application of a rapid antigen test for the detection of SARS-CoV-2 infection in symptomatic and asymptomatic patients evaluated in the emergency department: A preliminary report. J Infect. 2021;82(3):e14–6.
- [161] Uwamino Y, Nagata M, Aoki W, Nakagawa T, Inose R, Yokota H, et al. Accuracy of rapid antigen detection test for nasopharyngeal swab specimens and saliva samples in comparison with RT-PCR and viral culture for SARS-CoV-2 detection. J Infect Chemother. 2021;27(7):1058–62.
- [162] Van der Moeren N, Zwart VF, Lodder EB, Van den Bijllaardt W, Van Esch HRJM, Stohr JJJM, et al. Evaluation of the test accuracy of a SARS-CoV-2 rapid antigen test in symptomatic community dwelling individuals in the Netherlands. PLoS One [Internet]. 2021;16(5 May):1–11. Available from: http://dx.doi.org/10.1371/journal.pone.0250886
- [163] Van Honacker E, Van Vaerenbergh K, Boel A, De Beenhouwer H, Leroux-Roels I, Cattoir L. Comparison of five SARS-CoV-2 rapid antigen detection tests in a hospital setting and performance of one antigen assay in routine practice: a useful tool to guide isolation precautions?. Journal of Hospital Infection. 2021;114:144-152.
- [164] Veyrenche N, Bolloré K, Pisoni A, Bedin A-S, Mondain A-M, Ducos J, et al. Diagnosis value of SARS-CoV-2 antigen/antibody combined testing using rapid diagnostic tests at hospital admission [Internet]. bioRxiv. 2020. Available from: http://dx.doi.org/10.1101/2020.09.19.20197855
- [165] Von Ahnen T, von Ahnen M, Wirth U, Schardey H, Herdtle S. Evaluation of a rapid-antigen test for COVID-19 in an asymptomatic collective. Wiener Medizinische Wochenschrift. 2021;.
- [166] Wachinger J, Olaru ID, Horner S, Schnitzler P, Heeg K, Denkinger CM. The potential of SARS-CoV-2 antigen-detection tests in the screening of asymptomatic persons [published online ahead of print, 2021 Jul 26]. Clin Microbiol Infect. 2021;S1198-743X(21)00412-2. doi:10.1016/j.cmi.2021.07.020
- [167] Wagenhäuser I, Knies K, Rauschenberger V, Eisenmann M, McDonogh M, Petri N, et al. Clinical performance evaluation of SARS-CoV-2 rapid antigen testing in point of care usage in comparison to RT-qPCR. EBioMedicine. 2021;69(103455):103455. EBioMedicine. 2021 Jul;69:103455. doi: 10.1016/j.ebiom.2021.103455. Epub 2021 Jun 26. PMID: 34186490; PMCID: PMC8234263.
- [168] Weitzel T, Legarraga P, Iruretagoyena M, Pizarro G, Vollrath V, Araos R, et al. Head-to-head comparison of four antigen-based rapid detection tests for the diagnosis of SARS-CoV-2 in respiratory samples [Internet]. bioRxiv. 2020. Available from: http://dx.doi.org/10.1101/2020.05.27.119255

- [169] Yokota I, Sakurazawa T, Sugita J, Iwasaki S, Yasuda K, Yamashita N, Fujisawa S, Nishida M, Konno S, Teshima T. Performance of Qualitative and Quantitative Antigen Tests for SARS-CoV-2 Using Saliva. Infect Dis Rep. 2021 Aug 24;13(3):742-747. doi: 10.3390/idr13030069.
- [170] Young S, Taylor SN, Cammarata CL, Roger-Dalbert C, Montano A, Griego-Fullbright C, et al. Clinical evaluation of BD VeritorTM SARS-CoV-2 point-of-care test performance compared to PCR-based testing and versus the Sofia® 2 SARS Antigen point-of-care test [Internet]. bioRxiv. 2020. Available from: http://dx.doi.org/10.1101/2020.09.01.20185777.
- [171] Study to Evaluate the Performance of the Therma COVID-19 Rapid Antigen Test for Detection of SARS-CoV-2 [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04878068?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=2&rank=1
- [172] Clinical Evaluation of a Point-of-Care (POC), COVID-19 Rapid Antigen Test (CoviDxTM) Full Text View - ClinicalTrials.Gov [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04750629?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=2&rank=2
- [173] Diagnostic Accuracy of Rapid Antigen Test Based on Anterior Nasal Swab Compared With RT-PCR for SARS-CoV-2 Detection [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT05045846?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=2&rank=4
- [174] Clinical Performance Evaluation of KnowNow SARS-CoV-2 Test for the Detection of COVID-19 Antigen [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04733170?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=2&rank=5
- [175] Sensitivity and Specificity of SARS-CoV-2 Rapid Antigen Test Compared to RT-PCR Test [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04689399?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=2&rank=6
- [176] Rapid Antigen Testing for SARS-CoV-2 Among Healthcare Workers to Prevent Spread of COVID-19 [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04716088?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=2&rank=7
- [177] Evaluation of a COVID-19 Rapid Diagnostic Test in ER Departments in Mexico: A Multi-center Study [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04894760?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=2&rank=8
- [178] Somerset and South Essex Coronavirus Antigen Testing Full Text View ClinicalTrials.Gov [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04403906?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=2&rank=9
- [179] Dry Versus Wet Nasopharyngeal Rapid Test for the Detection of COVID-19. Full Text View -ClinicalTrials.Gov [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04839094?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=2&rank=10
- [180] An Approach to Screening for COVID-19 at Vancouver Airport [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04665193?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=3&rank=11
- [181] COVAG Covid-19 Antigen Study the Diagnostic Efficacy of SARS-CoV-2 Rapid Detection Tests -Full Text View - ClinicalTrials.Gov [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT05074017?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=3&rank=12

- [182] A Clinical Evaluation of COVID-19 Rapid Point of Care Antigen Tests [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04568356?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=3&rank=13
- [183] COVID-19 Rapid Testing for Self-Administration Among an Asymptomatic Sample [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04896710?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=3&rank=15
- [184] The Role of Frequent Point-of-care Molecular Workplace Surveillance for Miners [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04977050?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=3&rank=14
- [185] The Impact of SARS-CoV-2 Rapid Antigen Testing Kit Screening in Bangkok Community [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT05047900?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=3&rank=16
- [186] Performance Evaluation of SARS-COV-2 (Covid-19) Antigen Rapid Test [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04808921?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=3&rank=17
- [187] COVID-19 Diagnostic Self-testing Using Virtual Point-of-care [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04348864?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=3&rank=18
- [188] Sensitivity of Frequent SARS-CoV-2 (COVID-19) Rapid Antigen Testing Regimen [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04805840?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=3&rank=20
- [189] Antigen Rapid Test Screening to Prevent SARS-CoV-2 Transmission (COVID-19) at Mass Gathering Events [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04898127?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=4&rank=26
- [190] Performance Study of SONA Saliva C-19 Rapid Test [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available https://clinicaltrials.gov/ct2/show/NCT04877002?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=4&rank=27
- [191] Open Label, Single-Center Study Utilizing BIOZEK COVID-19 Antigen Rapid Test [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04926779?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=4&rank=28
- [192] Open Label, Single-Center Study Utilizing BIOZEK COVID-19 Antigen Rapid Test [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04805892?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=4&rank=30
- [193] COVID-19 Antigen Rapid Test Kit Full Text View ClinicalTrials.Gov [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from: https://clinicaltrials.gov/ct2/show/NCT04889365?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=5&rank=32
- [194] Study on Prevention of SARS-CoV-2 Transmission During a Large Indoor Gathering Event Full Text View - ClinicalTrials.Gov [Internet]. Clinicaltrials.gov. [cited 2021 Nov 4]. Available from:

https://clinicaltrials.gov/ct2/show/NCT04872075?term=rapid+antigen+tests&cond=COVID-19&intr=rapid+antigen+test&draw=5&rank=33

- [195] Diel R, Nienhaus A. Point-of-care COVID-19 antigen testing in German emergency rooms a costbenefit analysis. Pulmonology. 2021;. https://doi.org/10.1016/j.pulmoe.2021.06.009
- [196] Paltiel AD, Zheng A, Sax PE. Clinical and economic effects of widespread rapid testing to decrease SARS-CoV-2 transmission. Ann Intern Med. 2021;174(6):803–10. doi: https://doi.org/10.7326/M21-0510
- [197] EVALUATION OF RAPID Ag TEST KITS [Internet]. Gov.ph. [cited 2021 Nov 6]. Available from: https://ritm.gov.ph/covid-19-kit-evaluation/completed-evaluations/sars-cov-2-rapid-antigen-ag-test/
- [198] FDA Advisory No.2021-2094 [Internet]. Gov.ph. [cited 2021 Nov 6]. Available from: https://www.fda.gov.ph/fda-advisory-no-2021-2094-list-of-covid-19-test-kits-with-fda-specialcertification-and-performance-validation-conducted-and-or-recommended-by-the-research-institutefor-tropical-medicine-ritm/
- [199] FDA Advisory No. 2021-2452 [Internet]. Gov.ph. [cited 2021 Nov 6]. Available from: https://www.fda.gov.ph/fda-advisory-no-2021-2454-caution-on-the-purchase-and-use-of-certaincovid-19-test-kits-following-the-performance-validation-conducted-by-the-ritm/
- [200] FDA advisory no.2021-1896 [Internet]. Gov.ph. 2021 [cited 2021 Nov 6]. Available from: https://www.fda.gov.ph/fda-advisory-no-2021-1896-recall-of-covid-19-test-kits-with-low-results-ofperformance-validation-conducted-by-the-research-institute-of-tropical-medicine-ritm/
- [201] FDA advisory no.2021-1338 [Internet]. Gov.ph. 2021 [cited 2021 Nov 6]. Available from: https://www.fda.gov.ph/fda-advisory-no-2021-1338-delisted-companies-with-issued-fda-specialcertification-for-covid-19-test-kits/
- [202] Department of Health. Price Cap for COVID-19 Rapid Antigen Testing Asian Preparedness Partnership (APP) [Internet]. Adpc.net. [cited 2021 Nov 5]. Available from: https://app.adpc.net/resources/price-cap-for-covid-19-rapid-antigen-testing/
- [203] Department of Health Health Technology Assessment Council. Evidence Summary for Rapid Antigen Test - Recommendations. 29 April 2021. Accessed https://hta.doh.gov.ph/wpcontent/uploads/2021/05/2021_Evidence_Summary_for_Rapid_Antigen_Test-Recommendation.pdf on 26 October 2021.
- [204] Hanson KE, Altayar O, Caliendo AM, Arias CA, Englund JA, Hayden MK, Lee MJ, Loeb M, Patel R, El Alayli A, Sultan S, Falck-Ytter Y, Lavergne V, Mansour R, Morgan RL, Murad MH, Patel P, Bhimraj A, Mustafa RA. Infectious Diseases Society of America Guidelines on the Diagnosis of COVID-19: Antigen Testing. Infectious Diseases Society of America 2021; Version 1.0.0. Available at https://www.idsociety.org/practice-guideline/covid-19-guideline-antigen testing/. Accessed 5 November 2021.
- [205] World Health Organization. Antigen Detection in the Diagnosis of SARS-CoV-2 infection [Internet]. Who.int. [cited 2021 Nov 5]. Available from: https://www.who.int/publications/i/item/antigendetection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays
- [206] American Academy of Pediatrics. COVID-19 Testing Guidance [Internet]. Aap.org. [cited 2021 Nov 5]. Available from: https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/clinical-guidance/covid-19-testing-guidance

Appendix 1: Evidence to Decision

FACTORS	FACTORS JUDGEMENT RESEARCH EVIDENCE/ADDITIONAL CONSIDERATIONS								
Problem	No	Yes (8)							
Certainty of Evidence	High	Moderate (3)	Low (6)	Very low					Overall, the studies included are of low methodological quality due to risk of bias issues and high heterogeneity among included evaluations.
Accuracy	Very Accurate	Accurate (7)	Inaccurate (2)	Very Inaccurate			Across 164 studies, the pooled sensitivity of RAgTs was found to be moderate at 0.71 (95%CI: 0.68-0.73). Pooled specificity was excellent at 0.995 (95%CI: 0.993-0.996).		
Values	Important uncertainty or variability (1)	Possibly important uncertainty or variability (7)	Possibly NO important uncertainty or variability (1)	No important uncertainty or variability					
Resources Required	Uncertain	Large cost (1)	Moderate Cost (6)	Negligible cost	Moderate savings (1)	Large savings	Unit cost of the different brands of rapid antigen test kit in the market ranges from Php 250 to Php 1600.		
Certainty of evidence of required resources	No included studies (1)	Very low (1)	Low (5)	Moderate (1)	High (1)		In the Philippines, the Department of Health issued a memorandum dated September 1, 2021 strictly placing a price cap of Php 960 for rapid antigen testing in all testing and clinical laboratories.		
Cost effectiveness	No included studies (6)	Favors RT-PCR (1)	Does not favor either RAgT or RT-PCR	Favors RAgT (2)			No local economic evaluation studies are available as of press time on comparing rapid antigen tests and RT-PCR.		
Equity	Uncertain (4)	Reduced	Probably no impact	Increased (5)					
Acceptability	Uncertain (1)	No (1)	Yes (7)		·				
Feasibility	Uncertain	No	Yes (9)						

Appendix 2: Search Yield and Results

Search	Query	Results	Time
#10	Search #1 AND #8 Filters: from 1000/1/1 - 2021/9/30 Sort by: Most Recent	802	04:57:47
#9	Search #1 AND #8 Sort by: Most Recent	874	04:56:30
#8	Search #7 OR #2 Sort by: Most Recent	18,609	04:56:20
#7	Search #5 OR #6 Sort by: Most Recent	18,608	04:56:13
#6	Search: rapid antigen test* OR "rapid antigen detection test" OR radt OR radts OR rdt OR rdts OR (antigen* n3 detect*) Sort by: Most Recent	18,555	04:56:06
#5	Search #3 and #4 Sort by: Most Recent	171	04:55:58
#4	Search: (test OR tests OR detect* OR diagnos* OR kit OR kits OR assay*) Sort by: Most Recent	11,628,28 5	04:55:41
#3	Search: ((rapid OR point-of-care OR "point of care" OR poc OR poct) n3 antigen)) Sort by: Most Recent	204	04:55:27
#2	Search: "COVID-19 Ag Respi-Strip" OR "BIOCREDIT COVID- 19 Ag" OR "STANDARD F COVID-19 Ag" OR "STANDARD Q COVID-19 Ag" OR "Bioeasy 2019-nCoV Ag" Sort by: Most Recent	25	04:55:19
#1	Search: ("Coronavirus Infections"[Mesh] OR novel coronavirus OR NCOV OR "COVID-19"[Supplementary Concept] OR covid19 OR covid 19 OR covid-19 OR "severe acute respiratory syndrome coronavirus 2"[Supplementary Concept] OR severe acute respiratory syndrome coronavirus 2 OR SARS2 OR SARS 2 OR SARS COV2 OR SARS COV 2 OR SARS-COV-2) Sort by: Most Recent	205,257	04:55:11

Appendix 3. Characteristics of Included Studies

	Study	Setting	RAgT Brand	Test	Population	Sample		ce Standard
		•		Specimen	-	Size	Test	Specimen
1	Okoye 2021	USA	BinaxNOW COVID-19 Antigen Card (Abbott)	NP	Asymptomatic university students	2638	RT PCR	Nasal
2	Oh 2021	Korea	STANDARD Q COVID19 Ag (SD Biosensor)	NP	Patients admitted in the study hospital	118	RT PCR	NP
3	Lindner 202105	Germany	STANDARD Q COVID19 Ag (SD Biosensor)	MT + NP	Symptomatic patients at ambulatory testing facility	146	RT PCR	NP + OP
4	Lindner 202104	Germany	STANDARD Q COVID19 Ag (SD Biosensor)	MT	Symptomatic patients at ambulatory testing facility	287	RT PCR	NP + OP
5	Ishii 2021	Japan	ESPLINE SARS-CoV-2 (Fujirebio)	NP + Saliva	COVID and non-COVID patients admitted	271	RT PCR	NP
6	Baro 2021	Spain	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Unexposed asymptomatics during third wave in Spain	286	RT PCR	NP
7	Stokes 2021	Canada	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Symptomatic individuals	1786	RT PCR	NP
8	Torres 202101	Spain	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Asymptomatic close contacts	634	RT PCR	NP
9	Torres 202102	Spain	CLINITEST Rapid COVID-19 Antigen Test (Siemens)	NP	Symptomatic individuals and asymptomatic close contacts	270	RT PCR	NP
10	Torres 202102	Netherlands	COVID-19 Rapid Antigen Test (BD Veritor)	NP	Non-hospitalized symptomatic patients	351	RT PCR	NP
11	Yokota 2021	Japan	Lumipulse SARS-CoV-2 Antigen Kit (Fujirebio)	NP + Saliva	Inpatients and Outpatients	343	RT PCR	NP
12	Igloi 2021	Netherlands	Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)	NP	Symptomatic or close contact	970	RT PCR	NP + OP
13	Courtellemont 2021	France	COVID-VIRO Antigen Rapid Test (AAZ)	NP	Asymptomatic and hospitalized	248	RT PCR	NP
14	Olearo 2021	Germany	STANDARD Q COVID19 Ag (SD Biosensor) Panbio COVID-19 Ag Rapid Test (Abbott) SARS-CoV-2 Antigen Rapid Test (MedSan GmbH) CLINITEST Rapid COVID-19 Antigen Test (Siemens)	NP + OP	Asymptomatic and hospitalized	184	RT PCR	NP + OP
15	Jaaskelainen 2021	Finland	Sofia SARS Antigen Fluorescent Immunoassay (Quidel)	NP	Symptomatic	188	RT-PCR	NP

			STANDARD Q COVID19 Ag (SD			198		
			Biosensor) Panbio COVID-19 Ag Rapid Test (Abbott)		-	190	-	
16	Adnan 2021	Bangladesh	Rapid In-house ELISA (Bangladesh)	NP	No data	339	RT-PCR	NP
17	Pollock 2021a	USA	BinaxNOW COVID-19 Antigen Card (Abbott)	Nasal	Symptomatic patients	2,482	RT-PCR	Nasal
18	Pollock 2021b	USA	CareStart COVID-19 Antigen Test (Access Bio)	Nasal	Symptomatic patients	1,603	RT-PCR	Nasal
19	Peña-Rodríguez 2021	Mexico	STANDARD Q COVID19 Ag (SD Biosensor)	NP	Symptomatic, asymptomatic, exposed contacts (3-5 days)	369	RT-PCR	NP + OP
20	Chiu 2021	USA	INDICAID COVID-19 rapid antigen test (PHASE)	Nasal	Symptomatic participants	698	RT PCR	Nasal
		HongKong			Asymptomatic participants	22994	RT PCR	Nasal + OP
21	Shaikh 2021	USA	BinaxNOW COVID-19 Antigen Card (Abbott)	Nasal	Symptomatic children	199	RT PCR	Nasal
22	Laandas 2021	Norway	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Community and outbreak setting	4,857	RT-PCR	NP
23	Boum 2021	Cameroon	STANDARD Q COVID19 Ag (SD Biosensor)	NP	Hospitalized, asymptomatic volunteers, exposed contacts	1,195	RT-PCR	NP
24	Pickering 2021	UK	Innova Rapid SARS-CoV-2 Antigen Test (Xiamen Biotime Biotechnology) Spring Healthcare SARS-CoV-2 Antigen Rapid Test Cassette (Shanghai ZJ Bio-Tech) E25Bio Rapid Diagnostic Test (E25Bio) Encode SARS-CoV-2 Antigen Rapid Test Device (Zhuhai Encode Medical Engineering) COVID-19 Coronavirus Rapid Antigen Test Cassette (Surescreen) COVID-19 Coronavirus Rapid Antigen Test Cassette (Surescreen)	NP	Trained personnels; community settings, inpatients and outpatients	200	RT PCR	NP
25	Sood 2021	USA	BinaxNOW COVID-19 Antigen	Nasal	Children less than 18	783	RT-PCR	OP
			Card (Abbott)		years			

26	Matsuda 2021	Mexico	Ecotest COVID-19 Rapid Antigen Test (Verify) Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Symptomatic patients	112	RT-PCR	NP + OP
27	Bello-Chavolla 2021	Mexico	STANDARD Q COVID19 Ag (SD Biosensor)	NP	Community setting: COVID suspects	193824	RT-PCR	NP
28	Kyritsi 2021	Greece	Rapid Test Ag 2019-nCoV (PROGNOSIS, BIOTECH)	NP	Hospital setting	624	RT-PCR	NP
29	lqbal 2021	Pakistan	Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)	NP	Hospital setting: COVID suspects	170	RT-PCR	NP
30	Nikolai 2021	Germany	STANDARD Q COVID19 Ag (SD Biosensor)	Nasal + MT	Community setting: COVID suspects from ambulatory facility	228	RT-PCR	NP
31	Caruana 2021	Switzerland	Exdia COVID-19 Antigen Test (Precision-Bio) STANDARD Q COVID19 Ag (SD Biosensor) Panbio COVID-19 Ag Rapid Test (Abbott) COVID-19 Rapid Antigen Test (BD Veritor)	NP	Symptomatic and asymptomatic ER patients	532	RT-PCR	NP
32	Martin-Sanchez 2021	Spain	Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)	NP	Community setting: population-based screening of asymptomatic individuals	881	RT-PCR	NP
33	Maniscalco 2021	Italy	Inflammacheck device (Exhalation technology LTD)	Exhaled breath condensate	Hospital setting: COVID suspects, convalescent patients, asymptomatic with high risk of COVID, asymptomatic with low risk of COVID	105	RT-PCR	NP
34	Merino-Amador 2021	Spain	CLINITEST Rapid COVID-19 Antigen Test (Siemens)	NP	Hospital setting: COVID suspects with exposure < 7 days or early symptoms	450	RT-PCR	NP
35	Hauser 2021	Germany	LIAISON SARS-CoV-2 Antigen Assay (DiaSorin)	NP	Hospitalized patients	196	RT-PCR	NP
36	Osterman 2021	Germany	Lumipulse SARS-CoV-2 Antigen Kit (Fujirebio) Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics) LIAISON SARS-CoV-2 Antigen Assay (DiaSorin)	NP	Hospital setting: patients from ER or clinics	410	RT-PCR	NP

			SARS-CoV-2 Ag ELISA (Euroimmun)					
37	Andreani 2021	France	Panbio COVID-19 Ag Rapid Test (Abbott) STANDARD Q COVID19 Ag (SD Biosensor) Certest SARS-CoV-2 one step card test (Theradiag) Orient Gene Coronavirus Ag rapid cassette (Menarini) Espline SARS-CoV-2 (Fujirebio) Lumipulse SARS-CoV-2 Antigen	NP	Community settings: patients and personnels in a diagnostic facility	239	RT-PCR	NP
38	Salvagno 2021	Italy	Kit (Fujirebio) Espline SARS-CoV-2 (Fujirebio)	NP	Community settings: patients with confirmed COVID	174	RT-PCR	NP
39	Lhuillier 2021	Switzerland	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Community and hospital setting: Children	822	RT-PCR	NP
40	Korenkov 2021	Germany	STANDARD Q COVID19 Ag (SD Biosensor)	NP + OP	Hospital setting: COVID suspect and Trained personnel screening	2028	RT-PCR	NP + OP
41	Bachman 2021	USA	Open-access lateral flow assay Sofia SARS Antigen Fluorescent Immunoassay (Quidel) BinaxNOW COVID-19 Antigen Card (Abbott) Meso Scale Discovery MESO Quick- Plex SQ 120 (MSD) Open-access lateral flow assay Sofia SARS Antigen Fluorescent Immunoassay (Quidel) BinaxNOW COVID-19 Antigen Card (Abbott) Meso Scale Discovery MESO Quick- Plex SQ 120 (MSD)	Anterior nares	Community settings: COVID suspects in clinics	170	RT PCR	Anterior nares + NP
42	Nomoto 2021	Japan	Lumipulse SARS-CoV-2 Antigen Kit (Fujirebio)	NP	Hospital setting: inpatients	100	RT-PCR	NP

43	Kruger 2021	Germany	LumiraDx SARS-CoV-2 Antigen (LumiraDx)	MT	Community settings: COVID suspects in Drive- in testing site and ambulatory care facility	761	RT-PCR	NP
44	Kahn 2021	Germany	Standard F Covid19 Ag FIA (SD Biosensor)	OP	Community settings; Individuals at point-of- care facilities	3110	RT-PCR	OP
45	Escriva 2021	Spain	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Community settings: nursing home residents and employees	448	RT-PCR	NP
46	Norz 2021	Germany	Elecsys SARS-CoV-2 Antigen assay (Roche)	NP + OP	Hospital settings: multicenter routine diagnostic	3139	RT-PCR	NP and OP
47	Mboma 2021	Germany	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Hospitalized patients and accompanying relatives	3,686	RT-PCR	NP
48	Stohr 2021	The Netherlands	COVID-19 Rapid Antigen Test (BD Veritor) Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)	NP	Community settings	3,201	RT PCR	NP and OP
49	Allan-Blitz 2021	USA	BinaxNOW COVID-19 Antigen Card (Abbott)	AN + OP	Community setting	15,304	RT-PCR	NP + OP + AN
50	Cassuto 2021	France	COVID-VIRO Antigen Rapid Test (AAZ)	NP	Symptomatic adult volunteers	234	RT-PCR	NP
51	Agarwal 2021	India	STANDARD Q COVID19 Ag (SD Biosensor)	NP	Hospitalized patients and asymptomatic contacts	467	RT-PCR	NP
52	Hartard 2021	France	LIAISON SARS-CoV-2 Antigen Assay (DiaSorin)	NP	Mass screening of hospitalized patients	378	RT-PCR	NP
53	Kobayashi 2021	Japan	Lumipulse SARS-CoV-2 Antigen Kit (Fujirebio)	NP + saliva	Samples from hospitals and public health centers in Japan	10,422	RT-PCR	NP
54	Wagenhauser 2021	Germany	NADAL COVID-19 Rapid Antigen Test (Nal Von Minden) Panbio COVID-19 Ag Rapid Test (Abbott) SARS-CoV-2 Antigen Rapid Test (MedSan GmbH)	OP	Mass screening of all hospitalized patients	5,056	RT-PCR	OP
55	Amer 2021	Egypt	STANDARD Q COVID19 Ag (SD Biosensor)	NP + OP	Community and hospital setting: COVID suspects Trained personnels	83	RT-PCR	NP + OP
56	Montero 2021	Spain	Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)	NP + OP	Community setting: asymptomatic adults in a semi-closed community	2543	RT-PCR	NP + OP

57	Ferte 2021	France	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Community setting: symptomatic and asymptomatic students	688	RT-PCR	NP
58	Leixner 2021	Austria	AMP Rapid Test SARS-CoV-2 Ag (AMP)	NP	Hospital setting: symptomatic patients presenting at the ER	392	RT-PCR	NP + OP
59	Soleimani 2021	Belgium	BioSpeedia COVID19Speed- Antigen Test (Institut Pasteur)	NP	Community settings: COVID suspects or with exposure	401	RT-PCR	NP
			Panbio COVID-19 Ag Rapid Test (Abbott)					
60	Kiro 2021	India	Standard F Covid19 Ag FIA (SD Biosensor)	NP	Hospital setting: admitted patients and OPD patients from COVID screening	354	RT-PCR	NP
61	Garcia 2021	Spain	Panbio COVID-19 Ag Rapid Test (Abbott) Standard F Covid19 Ag FIA (SD Biosensor)	NP	Community settings	356	RT-PCR	NP
62	Seynaeve 2021	Belgium	COVID-19 Ag Respi-Strip (Coris Bioconcept) Coronavirus Ag Rapid Test Cassette (Healgen Scientific)	NP	Hospitalized patients	100	RT PCR	NP
63	Nsoga 2021	Nsoga	Panbio COVID-19 Ag Rapid Test (Abbott)	OP	Hospitalized patients	402	RT-PCR	NP
64	Eleftheriou 2021	Greece	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	hospitalized pediatric patients (< 16 years old) symptomatic and high risk for infection based on regional epidemiologic data	744	RT-PCR	NP
65	Fiñana 2021	UK	Innova Rapid SARS-CoV-2 Antigen Test (Xiamen Biotime Biotechnology)	NP + OP	Adults >18 years old; asymptomatic: community setting	5504	RT-PCR	NP + OP
66	Kurihara 2021	Japan	Quick Chaser Auto SARS-CoV-2 (Mizuhomedy)	NP	community: individuals that possibly contracted SARS-Cov2; referred by clinics, health centers and healthcare workers for testing	1401	RT PCR	NP
67	lfko 2021	Slovenia	NADAL COVID-19 Rapid Antigen Test (Nal Von Minden)	NP	Long-term healthcare facility: Elderly 65 - 95 yrs old with at least one symptom of COVID	125	RT-PCR	NP

68	Karon 2021	USA	COVID-19 Rapid Antigen Test (BD Veritor)	NP	residual phosphate buffered saline samples of symptomatic and asymptomatic patients	347	RT-PCR	NP
69	Abusrewil 2021	Libya	10 brands: Fluorecare, Espline, Rapigen, Assut, Orient Gene, AMP, Acon, Abbot, Certest Biotec, Bioperfectus	NP	community setting: clinical features suggestive of COVID-19 or a history of close contact with COVID-19 positive patients	231	RT-PCR	NP
70	Orsi 2021	Italy	FREND Antigen Test (NanoEntek)	NP	Hospitalized patients	110	RT-PCR	NP
71	Brihn 2021	USA	Sofia SARS Antigen Fluorescent Immunoassay (Quidel)	Anterior Nares	Symptomatic and asymptomatic patients	2039	RT-PCR	NP
72	Osmanodja 2021	Germany	Dräger Antigen Test SARS-CoV-2 (Dräger)	Anterior Nares	Community setting	379	RT-PCR	NP + OP
73	Bornemann 2021	Germany	Sofia SARS Antigen Fluorescent Immunoassay (Quidel)	NP	Community setting	1404	RT-PCR	NP
74	Holzner 2021	Germany	STANDARD Q COVID19 Ag (SD Biosensor)	NP	Community setting	2375	RT-PCR	NP
75	Pena 2021	Chile	STANDARD Q COVID19 Ag (SD Biosensor)	NP	Community setting	842	RT-PCR	NP
76	Donapetry 2021	Spain	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Children	440	RT-PCR	NP
77	Cento 2021	Italy	LumiraDx™ SARS-CoV-2 Antigen Test	NP	Community setting	960	RT-PCR	NP
78	Klein 2021	Germany	Panbio COVID-19 Ag Rapid Test (Abbott)	NP + MT	community: symptomatic adults and high risk contact of confirmed case in SARS-Cov-2- drive in testing center:	290	RT-PCR	NP
79	Frediani 2021	USA	BinaxNOW COVID-19 Antigen Card (Abbott)	Anterior Nares	community: community- based and hospital based testing center: age > 7 yrs old (adults and pedia) symptomatic within 7 days from onset	341	RT-PCR	NP
80	Schuit 2021	Netherlands	COVID-19 Rapid Antigen Test (BD Veritor) Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)	NP + OP	Close contacts, asymptomatic individuals requesting for a COVID- 19 test	2678	RT-PCR	NP + OP
81	Wachinger	Germany	STANDARD Q COVID19 Ag (SD Biosensor)	NP	Asymptomatic patients in hospitals, presenting for elective surgeries, OPD	1596	RT-PCR	Unspecified

82	Fourati 2021	France	COVID-19 Ag Respi-Strip (Coris Bioconcept)	NP	COVID-19 patients	626	RT-PCR	NP
			STANDARD Q COVID19 Ag (SD Biosensor)					
			Panbio COVID-19 Ag Rapid Test (Abbott)					
			COVID-VIRO Antigen Rapid Test					
			(AAZ) NG-test SARS-CoV-2 Ag (NG-					
			Biotech) BIOSYNEX COVID-19 Ag BSS- (Biosynex SA)					
83	Leli 2021	Italy	LumiraDx [™] SARS-CoV-2 Antigen Test	Nasal	Hospital (presenting in emergency department)	792	RT-PCR	NP
84	Sahuquillo 2021	Spain	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Hospital setting: pediatric ER; Symptomatic children aged 0-14 yrs	357	RT-PCR	NP
85	Kanauija 2021	India	COVID-19 Ag Respi-Strip (Coris Bioconcept)	NP	hospital setting (adult communicable disease ward); symptomatic adults and asymptomatic contacts	484	RT-PCR	NP
86	Dierks 2021	Germany	LumiraDx™ SARS-CoV-2 Antigen Test	NP	Hospital setting: employee of University Medical Center	444	RT-PCR	NP
87	Jung 2021	France	BIOSYNEX COVID-19 Ag BSS (Biosynex SA)	NP	hospital setting: ER & primary pediatric care center; age < 18	308	RT-PCR	NP
88	Tsai 2021	Taiwan	Vstrip COVID-19 Antigen Rapid Test (Panion & BF Biotech)	NP	Hospital setting: COVID suspects but no mention whether symptomatic or asymptomatic	61	RT-PCR	NP
89	Jegerlehner 2021	Switzerland	Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)	NP	community setting: COVID testing facility; adults>18 yrs symptomatic and those suspected of exposure to infected	1462	RT-PCR	NP
90	Thakur 2021	India	Immune-chromatographic lateral flow assay PathoCatch/ACCUCARE (Lab Care Diagnostics)	NP	Community settings (Preoperative)	677	RT-PCR	NP + OP
91	Kim 2021	South Korea		NP		130	RT-PCR	NP

		India	GenBody COVAG025 Rapid Antigen Test		Hospital setting: patients visited or admitted in the hospital	200		
92	Bruzzone 2021	Italy	STANDARD Q COVID19 Ag (SD Biosensor)	NP	Hospital setting: retrospective analysis of swab samples in	321	RT-PCR	NP
			Humasis COVID-Ag Test COVID- 19 Antigen (Humasis)		laboratory			
			Rapid Test Prima Professional					
			(Prima Lab)					
			BIOCREDIT COVID-19 Ag test (RapiGEN, Inc)					
			Standard F Covid19 Ag FIA (SD					
			Biosensor)					
			LumiraDx™ SARS-CoV-2 Antigen Test					
			FREND Antigen Test (NanoEntek)					
93	Nordgren 2021	Sweden	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Community setting: Symptomatic individuals	332	RT-PCR	NP
			Coronavirus Ag Rapid Test Cassette (Healgen Scientific)					
94	Bianco 2021	Italy	LumiraDx™ SARS-CoV-2 Antigen Test	Nasal	Hospital setting: patients in adult and pedia ER and Trained personnels	907	RT-PCR	NP
95	Kolwijck 2021	Netherlands	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Hospital setting: Trained personnel at least 16 years old	433	RT-PCR	NP and OP
96	Ford 2021	USA	Sofia SARS Antigen Fluorescent Immunoassay (Quidel)	MT	Community setting: students, faculty and employee of University	1051	RT-PCR	MT
97	Kweon 2021	Korea	AFIAS COVID-19 Ag (AFC) (Menarini; Florence, Italy)	NP	Hospital setting: Mixed COVID19 and non-	322	RT-PCR	NP
			ichromaTM COVID-19 Ag (Boditech)		COVID19 patients			
98	Berger 2021	Switzerland	Panbio COVID-19 Ag Rapid Test	NP	Hospital setting:COVID	535	RT-PCR	NP
			(Abbott) STANDARD Q COVID19 Ag (SD		suspects at least 16 years old consulting in	529	-	
			Biosensor)		the hospital	529		
99	Van Honacker 2021	Belgium	BIOSYNEX COVID-19 Ag BSS (Biosynex SA)	NP	Hospital setting: COVID suspect and non-COVID	100	RT-PCR	NP
			Biotical SARS-CoV-2 Ag Card		with other respiratory	100		
			(Biotical Health)		isolates			

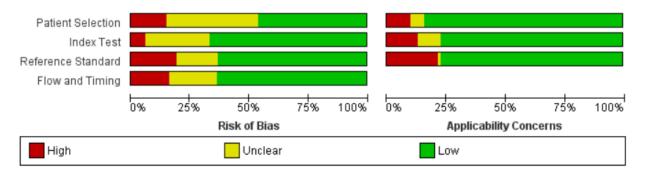
			Coronavirus AG Rapid test			98		
			cassette (Zhejiang Orient Gene					
			Biotech Co., Zhejiang, China)					
			Panbio COVID-19 Ag Rapid Test			97		
			(Abbott)					
			STANDARD Q COVID19 Ag (SD			98		
			Biosensor)					
			STANDARD Q COVID19 Ag (SD			4207		
			Biosensor)					
100	Bouassa 2021	France	SIENNA COVID-19 Antigen Rapid Test Cassette	NP	Hospital setting: retrospective study of archived NP swabs	150	RT-PCR	NP
101	Caruana 2021	Switzerland	STANDARD Q COVID19 Ag (SD	NP	Hospital setting:	116	RT-PCR	NP
101		Ownzenana	Biosensor)		asymptomatic adults	110		
			,		hospitalized in medical			
					and surgical wards			
102	Baccani 2021	Italy	Lumipulse SARS-CoV-2 Antigen	NP	Hospital setting:	201	RT-PCR	NP
			Kit (Fujirebio)		inpatients in 3 Tuscan			
			Standard F Covid19 Ag FIA (SD		hospitals	93		
			Biosensor)					
			AFIAS COVID-19 Ag (AFC)			81		
			(Menarini; Florence, Italy)					
103	Koeleman 2021	Netherlands	Certest SARS-CoV-2 (Certest	NP and OP		80	RT-PCR	NP and OP
			Biotec S.L., Spain)		symptomatic ER patients,			
					nursing home residents			
					and Trained personnels		-	
			Roche SARS-CoV-2 Rapid Antigen			80		
			Test (Roche Diagnostics)		-		-	
			Romed Coronavirus Ag Rapid Test			80		
			(Romed, The Netherlands) Romed Coronavirus Ag Rapid Test		-	900	-	
			(Romed, The Netherlands)			900		
104	Kruger 2021	Germany	Panbio COVID-19 Ag Rapid Test	NP	Community setting:	1108	RT-PCR	NP and OP
104	Kiugei 2021	Germany	(Abbott)	INF	patients in drive-in testing	1100	RI-FCR	INF and OF
					site and ambulatory			
					testing facility			
105	Denina 2021	Italy	LumiraDx™ SARS-CoV-2 Antigen	Nasal	Hospital setting: children	191	RT-PCR	NP
			Test		admitted at the ER and			
					hospital			
107	Stokes 202109	USA	BinaxNOW COVID-19 Antigen	Anterior	Hospital setting:	997	RT-PCR	NP
			Card (Abbott)	nares	Asymptomatic pre-			

107	Halfon 2021	France	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Community setting: patients screened in the laboratory	200	RT-PCR	NP
108	Paul 2021	India	VITROS Immunodiagnostic Products SARS-CoV-2 Antigen test (Ortho Clinical Diagnostics)	NP + OP	Hospital setting: symptomatic patients in OPD	148	RT-PCR	NP and OP
			Angcard® COVID-19 rapid Antigen Test kit (Angstrom® Biotech Pvt. Ltd., Alwar, Rajasthan, India)	NP				
109	Von Ahnen 2021	Germany	Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)	NP	Hospital setting: screening of all employees	919	RT-PCR	NP
110	Shah 2021	USA	BinaxNOW COVID-19 Antigen Card (Abbott)	Anterior nares	Community setting: patients recruited from community testing site	2110	RT-PCR	Anterior nares
111	McKay 2021	USA	BinaxNOW COVID-19 Antigen Card (Abbott)	Anterior Nares	Community setting: residents and employees of nursing home	532	RT-PCR	Mixed
112	Abdelrazik 2021	Egypt	BIOCREDIT COVID-19 Ag test (RapiGEN, Inc)	NP	Patients and HCW, patient contacts	310	RT-PCR	NP
113	Albert 2020	Spain	Panbio COVID-19 Ag Rapid Test (Abbott)	NP or OP	COVID 19 test centre	497	RT-PCR	NP
114	Alemany 2020	Spain	Panbio COVID-19 Åg Rapid Test (Abbott)	NP or OP	Symptomatic patients, close contacts, preventive screening of unexposed asymptomatics	1406	RT-PCR	NP or MT
115	Asai 2021	Japan	Lumipulse SARS-CoV-2 Antigen Kit (Fujirebio)	Saliva	Suspected patients	305	RT-PCR	Saliva
116	Billaud 2020	France	Panbio COVID-19 Ag Rapid Test (Abbott)	NP or OP	Contacts	462	RT-PCR	NP or OP
117	Blairon 2020	Belgium	COVID-19 Ag Respi-Strip (Coris Bioconcept)	NP or OP	Laboratory-based	56	RT-PCR	NP
118	Bulilete 2021	Spain	Panbio COVID-19 Ag Rapid Test (Abbott)	NP	Symptomatic patients and close contacts	1369	RT-PCR	NP
119	Caputo 2021	Italy	Lumipulse SARS-CoV-2 Antigen Kit (Fujirebio)	NP	Clinical suspect, screening or contacts	4266	RT-PCR	NP
120	Cerutti 2020	Italy	STANDARD Q COVID19 Ag (SD Biosensor)	NP	Mixed	256	RT-PCR	NP
121	Chaimayo 2020	Thailand	STANDARD Q COVID19 Ag (SD Biosensor)	NP + OP	Covid-19 suspects	454	RT-PCR	NP + OP
122	Ciotti 2021	Italy	COVID-19 Ag Respi-Strip (Coris Bioconcept)	NP	Covid-19 suspects	50	RT-PCR	NP

123	Diao 2020	China	2019-nCoV Ag Fluorescence Rapid Test Kit (Bioeasy)	NP or OP	Unclear	239	RT-PCR	NP
124	Favresse 2021	Belgium	Biotical SARS-CoV-2 Ag Card (Biotical Health) Panbio COVID-19 Ag Rapid Test (Abbott) Coronavirus Ag Rapid Test Cassette (Healgen Scientific) Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics) VITROS Immunodiagnostic Products SARS-CoV-2 Antigen test (Ortho Clinical Diagnostics)	NP	Symptomatic and asymptomatic subjects	188	RT-PCR	NP
125	Fenollar 2020	France	Panbio COVID-19 Ag Rapid Test (Abbott)	NP or OP	Symptomatic patients	182	RT-PCR	NP
					Asymptomatic contacts	159		
126	Fourati 2020	France	COVID-19 Ag Respi-Strip (Coris Bioconcept)	NP or OP	Laboratory-based	629	RT-PCR	NP
			STANDARD Q COVID19 Ag (SD Biosensor)			628		
			Panbio COVID-19 Ag Rapid Test (Abbott)			632		
			BIOSYNEX COVID-19 Ag BSS (Biosynex SA)		-	634		
			COVID-VIRO Antigen Rapid Test (AAZ)			632		
127	Gili 2021	Italy	Lumipulse SARS-ĆoV-2 Antigen Kit (Fujirebio)	NP	Screening population	1340	RT-PCR	NP
128	Gremmels 2020	Netherlands	Panbio COVID-19 Ag Rapid Test (Abbott)	NP or OP	COVID-19 test centre	1367	RT-PCR	NP
129	Gupta 2020	India	STANDARD Q COVID19 Ag (SD Biosensor)	NP or OP	COVID-19 test centre	330	RT-PCR	NP + OP
130	Herrera 2020	USA	Sofia SARS Antigen Fluorescent Immunoassay (Quidel)	NP	Symptomatic and asymptomatic healthcare workers	1172	RT-PCR	NP
131	Hirotsu 2020	Japan	Lumipulse SARS-CoV-2 Antigen Kit (Fujirebio)	NP	Hospital setting: infected and noninfected patients	313	RT-PCR	NP
132	Homza 2021	Czech Republic	SARS-CoV-2 Antigen Rapid Test Kit (JOYSBIO [Tianjin Biotechnology Co., China]) Ecotest COVID-19 Antigen Rapid	NP	COVID-19 test centre	225	RT-PCR, viral culture	NP
			Test (Assure Tech, Hangzhou, China)			179		

						70		
			STANDARD Q COVID19 Ag (SD Biosensor)			72		
			Immupass VivaDiag SARS-CoV-2		-	268	_	
			Ag Rapid Test (VivaChek Biotech					
			[Hangzhou] Co., China)					
			ND COVID-19 Ag test (NDFOS,			91		
			Eumseong, Korea)					
133	James 2021	USA	BinaxNOW COVID-19 Antigen Card (Abbott)	NP	Symptomatic and asymptomatic patients	2339	RT-PCR	Nasal swab
134	Kruger 2020	Germany	2019-nCoV Ag Fluorescence Rapid Test Kit (Bioeasy)	NP + OP	COVID-19 test centre	712	RT-PCR	NP + OP
			COVID-19 Ag Respi-Strip (Coris Bioconcept)		-	409		
			STANDARD Q COVID19 Ag (SD Biosensor)		-	1216	-	
135	Kruttgen 2020	Germany	Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)	NP	Admitted patients in the hospital	150	RT-PCR	NP
136	Lambert-Niclot 2020	France	COVID-19 Ag Respi-Strip (Coris Bioconcept)	NP or OP	Laboratory-based	138	RT-PCR	NP
137	Linares 2020	Spain	Panbio COVID-19 Ag Rapid Test (Abbott)	NP or OP	Hospital A&E	255	RT-PCR	NP
138	Liotti 2020	Italy	Standard F Covid19 Ag FIA (SD Biosensor)	NP or OP	Laboratory-based	359	RT-PCR	NP
139	Mak 2020	China	BIOCREDIT COVID-19 Ag test (RapiGEN, Inc)	Mixed respiratory samples	COVID-confirmed patients	368	RT-PCR	d respiratory sam
140	Mertens 2020	Belgium	COVID-19 Ag Respi-Strip (Coris Bioconcept)	NP or OP	Laboratory-based	328	RT-PCR	NP
141	Mockel 2021	Germany	Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)	NP + OP	COVID19 suspect adults in the emergency department	271	RT-PCR	NP
142	Muhi 2021	Australia	Panbio COVID-19 Ag Rapid Test (Abbott)	Nasal	Hospital	2602	RT-PCR + Viral culture	NP + OP
143	Nagura-Ikeda 2020	Japan	Espline SARS-CoV-2 (Fujirebio)	Saliva	Mixed	103	RT-PCR	Saliva
144	Nalumansi 2020	Uganda	STANDARD Q COVID19 Ag (SD Biosensor)	NP	COVID-19 suspects and low-risk volunteers	262	RT-PCR	NP
145	Nash 2020	USA	E25Bio Rapid Diagnostic Test (E25Bio)	NP or OP	Laboratory-based	190	RT-PCR	NP + OP
146	Osterman 022021	Germany	STANDARD Q COVID19 Ag (SD Biosensor)	NP + OP	Symptomatic patients in the ER	681	RT-PCR	NP + OP
			Roche SARS-CoV-2 Rapid Antigen		ľ	771	1	
			Test (Roche Diagnostics)					

147	Porte 2020a	Chile	2019-nCoV Ag Fluorescence Rapid Test Kit (Bioeasy)	NP + OP	Hospital A&E	127	RT-PCR	NP + OP
148	Porte 2020b	Chile	Sofia SARS Antigen Fluorescent Immunoassay (Quidel)	NP + OP	COVID-19 test centre	64	RT-PCR	NP + OP
			Standard F Covid19 Ag FIA (SD Biosensor)	NP + OP	COVID-19 test centre	64	RT-PCR	
149	Pray 2021	USA	Sofia SARS Antigen Fluorescent Immunoassay (Quidel)	Anterior Nares	students, faculty & staff of university campus	1098	RT-PCR	Anterior Nares
150	Prince-Guerra 2021	USA	BinaxNOW COVID-19 Antigen Card (Abbott)	Anterior Nares	10 years and older receiving testing for COVID 19	4904	RT-PCR	NP
151	Ristic 2021	Serbia	STANDARD Q COVID19 Ag (SD Biosensor)	NP	triage ambulance of primary and tertiary outpatients healthcare facility; 14 - 91 yrs old	120	RT-PCR	NP
152	Rottenstreich 2021	Israel	NowCheck COVID-19 Ag Test (Bionote)	NP	Asymptomatic women admitted for delivery	1326	RT-PCR	NP
153	Schildgen 2020	Germany	BIOCREDIT COVID-19 Ag test (RapiGEN, Inc)	Mixed	Laboratory based: specimens with confirmed PCR results	73	RT-PCR	Mixed
			Panbio COVID-19 Ag Rapid Test (Abbott) Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)					
154	Scohy 2020	Belgium	COVID-19 Ag Respi-Strip (Coris Bioconcept)	NP	Laboratory-based: NP specimen for COVID testing with available data on symptomatology of some specimen	148	RT-PCR	NP
155	Seitz 2021	Austria	COVID- 19 Antigen Test Cassette [hypersensitive colloidal gold] (Xiamen Zhongsheng Langjie Biotechnology Co., Ltd)	Saliva	healthy citizens of Vienna, Austria were invited to participate in a vo- luntary SARS-CoV-2 mass screening	40	RT-PCR	gargle sample
156	Shrestha 2020	Nepal	BIOCREDIT COVID-19 Ag test (RapiGEN, Inc)	NP or OP	close contacts of confirmed COVID 19	113	RT-PCR	NP
157	Takeda 2020	Japan	Espline SARS-CoV-2 (Fujirebio)	NP or OP	Laboratory-based: specimens for COVID testing	162	RT-PCR	NP
158	Turcato 2020	Italy	STANDARD Q COVID19 Ag (SD Biosensor)	NP	ER consults (COVID related and non-COVID complains) and contacts of COVID infected persons	3410	RT-PCR	NP



159	Uwamino 2021	Japan	Espline SARS-CoV-2 (Fujirebio)	NP and saliva	Adults for COVID testing	117	RT-PCR	NP and saliva
160	Veyrenche 2020	France	COVID-19 Ag Respi-Strip (Coris Bioconcept)	NP or OP	Inpatients, symptomatic adults and healthcare worker	65	RT-PCR	NP
161	Weitzel 2020	Chile	BIOCREDIT COVID-19 Ag test (RapiGEN, Inc)	NP + OP	symptomatic individuals	109	RT-PCR	NP + OP
			StrongStep Rapid Antigen Test (Liming)			19		
			Huaketai SARS-CoV-2 Rapid Antigen Test (Savant)			109		
			2019-nCoV Ag (Shenzhen Bioeasy Biotech)			111		
			COVID-19 Rapid Antigen Test (BD Veritor)			251		
162	Young 2020	USA	COVID-19 Rapid Antigen Test (BD Veritor)	NP or OP	18 years old and above with symptoms	251	RT-PCR	NP or OP
163	Pilarowski 2020	USA	BinaxNOW COVID-19 Antigen Card (Abbott)	Anterior Nares	symptomatic and asymptomatic individuals	3302	RT-PCR	Anterior Nares
164	PHE 2020	United Kingdom	Innova Rapid SARS-CoV-2 Antigen Test (Xiamen Biotime Biotechnology)	NP + OP	Hospital in-patient; contacts; patients in COVID-19 test center	3168	RT-PCR	NP + OP

RT PCR: Reverse Transcriptase – Polymerase Chain Reaction; NP: Nasopharyngeal; OP: Oropharyngeal.

Appendix 4. Risk of Bias and Applicability Concerns of Included Studies

Appendix 5. Characteristics of Ongoing Studies

NCT Number	Title	Population	Interventions	Comparator	Outcomes
NCT04878068	Study to Evaluate the Performance of the Therma COVID-19 Rapid Antigen Test for Detection of SARS-CoV-2	12 years old and above aat COVID-19 testing centre	Device: Theram COVID-19 Rapid Antigen Test; Saliva sample	RT PCR	Establish Performance of Therma COVID-19 Rapid Antigen Test, Participant Feedback, User Feedback
NCT04750629	Clinical Evaluation of a Point-of- Care (POC), COVID-19 Rapid Antigen Test (CoviDx™)	1 year old and above suspected of SARS-Cov-2	Device: POC CoviDx™ Rapid Antigen Test	SARS-Cov-2 RT-PCR	Sensitivity of SARS-CoV-2 antigen in nasal swab as compared to a high- sensitive SARS-CoV-2 RT-PCR granted Emergency Use Authorization (EUA) by the FDA
NCT05045846	Diagnostic Accuracy of Rapid Antigen Test Based on Anterior Nasal Swab Compared With RT-PCR for SARS-CoV-2 Detection.	18 years old and above who have self-booked appointment at COVID testing centre	Rapid Antigen Test Based on Anterior Nasal Swab	RT-PCR	Accuracy of anterior nasal swab in rapid antigen (Ag)-tests
NCT04733170	Clinical Performance Evaluation of KnowNow SARS-CoV-2 Test for the Detection of COVID-19 Antigen	18 years old and above suspected with COVID-19	Diagnostic Test: KnowNow SARS-CoV-2 Rapid Antigen Test	RT-PCR	Assess clinical diagnostic performance of the KnowNow SARS- CoV-2 Rapid Antigen Test, Efficacy to assess the test compared to the reference test method; Usability Questionnaire to evaluate the use of the test with 2 saliva collection methods
NCT04689399	Sensitivity and Specificity of SARS-CoV-2 Rapid Antigen Test Compared to RT-PCR Test	18 years old above with appointment at COVID-a9 testing center	Diagnostic Test: Standard Q COVID-19 Ag - test, produced by SD Biosensor INC.	RT PCR	Sensitivity and specificity of the rapid antigen test of COVID-19 Economic analyses PCR analysis on nasopharyngeal swabs
NCT04716088	Rapid Antigen Testing for SARS-CoV-2 Among Healthcare Workers to Prevent Spread of COVID-19	18 years old and above healthcare workers	Repeated Rapid antigen test for SARS CoV2	RT PCR	SARS CoV2 infection
NCT04894760	Evaluation of a COVID-19 Rapid Diagnostic Test in ER	18 years old and above with	Diagnostic Test: Rapid Antigen Test (PanBio Ag test)	RT PCR	Diagnostic accuracy

	Departments in Mexico: a Multi- center Study	respiratory symptoms visiting the ER			
NCT04403906	Somerset and South Essex Coronavirus Antigen Testing	18 years old and above with clinical indication for COVID testing	Diagnostic Test: PCL COV05 - COVID 19 Ag Rapid FIA test (Rapid Antigen Test)	RT PCR	To compare the result of SARS- COV2 PCR test to PCL rapid antigen test Number of technically failed samples due to test issues. Time taken for PCL Antigen test result
NCT04839094	Dry Versus Wet Nasopharyngeal Rapid Test for the Detection of COVID-19.	18 years old and above hospitalized with a confirmed SARS-Cov-2 infection	Diagnostic Test: rapid antigen testing; nasopharyngeal vs saliva samples	RT PCR	Diagnostic assessment Limit of detection determination.
NCT04665193	An Approach to Screening for COVID-19 at Vancouver Airport	Adults with ticket to board a flight from Vancouver International Airport	Rapid Antigen Test	none	COVID-19 status; effectiveness and feasibility of rapid antigen test in airport screening
NCT05074017	COVAG - Covid-19 Antigen Study - the Diagnostic Efficacy of SARS-CoV-2 Rapid Detection Tests	18 years old and above at testing centers in whom RT- PCR testing for SARS-CoV-2 is medically indicated or requested	2 rapid antigen tests	RT PCR	Sensitivity of the rapid antigen tests
NCT04568356	A Clinical Evaluation of COVID- 19 Rapid Point of Care Antigen Tests	18 years old and above suspected with COVID	Diagnostic Test: Direct Antigen Tests for COVID-19; nasopharyngeal, nasal and saliva samples	RT PCR	Percent Positive Agreement and Negative Percent Agreement
NCT04896710	COVID-19 Rapid Testing for Self-Administration Among an Asymptomatic Sample	16 Years to 80 Years Asymptomatic	Device: SD Biosensor RAT; self-administered	professional administered SD Biosensor RAT	Concordance Ability of rapid antigen test to detect COVID-19 positive Acceptability of self-administration

NCT04977050	The Role of Frequent Point-of- care Molecular Workplace Surveillance for Miners	18 Years and above miners	Diagnostic Test: Quidel quickvue antigen test for COVID-19	RT PCR	Screening test (molecular) Diagnostic test (RT-PCR) Serologic antibody test
NCT05047900	The Impact of SARS-CoV-2 Rapid Antigen Testing Kit Screening in Bangkok Community	10 years and older in any Bangkok community	Routine Use of Rapid antigen testing kit	Did not routinely use Rapid antigen testing kit	Incidence rate of COVID19 infection Incidence rate of severe COVID19 infection Incidence of COVID19 infection in COVID19 vaccinated and unvaccinated people sensitivity and specificity of rapid antigen testing kit
NCT04808921	Performance Evaluation of SARS-COV-2 (Covid-19) Antigen Rapid Test	Child and adults clinically suspected of COVID 19	Diagnostic Test: Xiamen Wiz Biotech Co., Ltd. SARS-CoV-2 Antigen Rapid Test	RT PCR	Percent Positive Agreement and Negative Percent Agreement
NCT04348864	COVID-19 Diagnostic Self- testing Using Virtual Point-of- care	18 years old and above suspected or clinically diagnosed with COVID	Diagnostic Test: COVID-19 Antigen/Antibody Rapid Testing, mobile device image capture and telemedicine support Self-test interpretation	RT PCR; Expert Clinical Interpretation of results	Clinical accuracy of the antibody and antigen rapid tests compared to LAMP/PCR-based test result Clinical accuracy of the antibody and antigen rapid tests based on Clinical diagnosis Self-test interpretation of result vs expert clinical image interpretation of result Ease of self-testing procedure
NCT04805840	Sensitivity of Frequent SARS- CoV-2 (COVID-19) Rapid Antigen Testing Regimen	18 years old and above healthy volunteers	Frequent testing of CoV-SCAN rapid COVID-19 antigen test	RT PCR	Sensitivity of CoV-SCAN daily testing regimen Specificity of CoV-SCAN daily testing regimen Time from CoV-SCAN positive to PCR positive result
NCT04898127	Antigen Rapid Test Screening to Prevent SARS-CoV-2 Transmission (COVID-19) at Mass Gathering Events.	18 - 45 years old volunteers	Diagnostic Test: SARS-CoV-2 antigen rapid test Rapid test before access to mass gathering event (concert), provided the test result is negative.	RT PCR	SARS-CoV-2 infection Clinical COVID-19 disease Hospital admissions False positive rapid test

NCT04877002	Performance Study of SONA Saliva C-19 Rapid Test	18 years old and above presenting with COVID symptoms at the ER	Diagnostic Test: Sona Saliva C-19 Rapid Test	RT PCR	Percent Positive Agreement and Negative Percent Agreement
NCT04926779	Open Label, Single-Center Study Utilizing BIOZEK COVID- 19 Antigen Rapid Test	18 years old and above with COVID-19 symptoms and close contacts	Diagnostic Test: Biozek Covid- 19 Antigen Rapid Test (Saliva)	RT PCR	Sensitivity and Specificity of Biozek Covid-19 Antigen Rapid Test (Saliva) Sensitivity and Specificity of Biozek Covid-19 Antigen Rapid Test (Nasopharyngeal Swab)
NCT04805892	Open Label, Single-Center Study Utilizing BIOZEK COVID- 19 Antigen Rapid Test.	18 years old and above with COVID-19 symptoms and close contacts	Diagnostic Test: BIOZEK COVID-19 Antigen Rapid Test; professional vs sel-collected	RT PCR	Sensitivity and Specificity of BIOZEK COVID-19 Antigen Rapid Test on a sample collected by healthcare professionals. Sensitivity and Specificity of BIOZEK COVID-19 Antigen Rapid Test on self-collected sample.
NCT04889365	COVID-19 Antigen Rapid Test Kit	18 years old and above with or without COVID- 19 symptoms	Diagnostic Test: SG Diagnostics COVID-19 Antigen Rapid Test Kit	Diagnostic Test: Polymerase chain reaction (PCR) test	Sensitivity of SG Diagnostics COVID- 19 Antigen Rapid Test Kit Specificity of SG Diagnostics COVID- 19 Antigen Rapid Test Kit
NCT04872075	Study on Prevention of SARS- CoV-2 Transmission During a Large Indoor Gathering Event	18 to 45 years old healthy volunteers	Concert Attendees; Diagnostic Test: Rapid nasopharyngeal antigen test for Sars-Cov-2 Diagnostic Test: Saliva Sample	RT PCR; People staying at home	Number of participants with a positive salivary RT-PCR at day 7 after the date of the concert Number of participants in each group with a positive salivary RT-PCR the day of the concert Molecular analysis of transmission cluster

Appendix 6 GRADE Evidence Profile

A. OVERALL

Should rapid antigen test be used to diagnose COVID-19 in patients suspected to have COVID-19?

Patient or population: patients suspected to have COVID-19 Pooled sensitivity: 0.71 (95% Cl: 0.68 to 0.73) Pooled specificity: 0.99 (95% Cl: 0.99 to 1.00)

	No of	Study design		Factors that r	nay decrease cert	ainty of evidend	ce	Effect pe	r 1,000 patien	its tested	Test	
Outcomes	studies (No of patients)		Risk of bias	Indirectness	Inconsistency	Imprecision	Publication Bias	Pre-test probability of 5%	Pre-test probability of 10%	Pre-test probability of 15%	Accuracy CoE	
True positives (patients with COVID- 19)	164 studies (43,943 patients)	Cross- sectiona						36 (34 to 37)	71 (68 to 73)	107 (102 to 110)		
False negatives (patients incorrectly classified as not having COVID-19)		(43,943 type	ac serious"	not serious	serious ^b	not serious	none	14 (13 to 16)	29 (27 to 32)	43 (40 to 48)	∎ ⊕⊕⊖⊖ Low	
True negatives (patients without COVID-19)	164	Cross- sectiona						945 (943 to 946)	896 (894 to 896)	846 (844 to 847)	##OO	
False positives (patients incorrectly classified as having COVID-19)	(191,573 patients)	· · ·		not serious	serious ^b	not serious	none	5 (4 to 7)	4 (4 to 6)	4 (3 to 6)	Low	

CI: confidence interval

Explanations

a. High and unclear risk on all domains (patient selection, conduct of index text and reference standard and patient flow and timing)

b. High heterogeneity across studies $(l^2 = 99\% [99-100\%])$

5

%

10%

15%

B. SYMPTOMATIC

Question: Should rapid antigen test be used to diagnose COVID-19 in symptomatic individuals suspected of COVID-19?

Sensitivity	0.74 (95% CI: 0.71 to 0.78)						
Specificity	(95% CI: to)						

Outcome	Nº of studies (Nº of	es design		Factors that	may decrease c	ertainty of evide	nce	Effect p	Test accuracy CoE		
	patient s)		Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 5%	pre-test probability of 10%	pre-test probability of 15%	
True positives (patients with COVID-19)	79 studies 45523	cross- sectional (cohort	serious ª	not serious	serious ^{a,b}	not serious	none	37 (36 to 39)	74 (71 to 78)	111 (107 to 117)	⊕⊕⊖⊖ Low
False negatives (patients incorrectly classified as not having COVID-19)	patient s	· · · · · · · · · · · · · · · · · · ·						13 (11 to 14)	26 (22 to 29)	39 (33 to 43)	
True negatives (patients without COVID-19)	0 studies patient							0 (0 to 0)	0 (0 to 0)	0 (0 to 0)	-
False positives (patients incorrectly classified as having COVID-19)	S							950 (950 to 950)	900 (900 to 900)	850 (850 to 850)	

Explanations

a. Unclear and high risk of bias in all domains (e.g. patient selection, conduct of index test and reference stand, and patient flow)

b. High heterogeneity (different timing of testing, test brands, specimen type)

Should rapid antigen test be used to diagnose COVID-19 in symptomatic individuals suspected of COVID-19?

Patient or population: symptomatic individuals suspected of COVID-19

Setting:

New test:rapid antigen test |Cut-off value:

Pooled sensitivity:0.74 (95% CI: 0.71 to 0.78) |Pooled specificity: not calculated

Test result	Number of I	results per 1,000 patients te	ested (95% CI)	Number of participants	Certainty of the Evidence (GRADE)	
	Prevalence5% Typically seen in	Prevalence10% Typically seen in	Prevalence15% Typically seen in	(studies)		
True positives	37 (36 to 39)	74 (71 to 78)	111 (107 to 117)	45523 (79)	⊕⊕⊖⊖ Low ^{a,b}	
False negatives	13 (11 to 14)	26 (22 to 29)	39 (33 to 43)			
True negatives					-	
False positives						
CI: confidence interval						

Explanations

a. Unclear and high risk of bias in all domains (e.g. patient selection, conduct of index test and reference stand, and patient flow)

b. High heterogeneity $(I^2 = 99\% [99-100\%])$

5

%

10%

15%

C. ASYMPTOMATIC

Question: Should rapid antigen test be used to diagnose COVID-19 in asymptomatic individuals suspected of COVID-19?

Sensitivity	0.56 (95% CI: 0.51 to 0.62)					
Specificity	(95% CI: to)					

Outcome	Nº of studies	Study design		Factors that m	ay decrease cer	tainty of evide	nce	Effect pe	Test accuracy		
	(№ of patients)		Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 5%	pre-test probability of 10%	pre-test probability of 15%	CoE
True positives (patients with COVID- 19)	55 studies 72858 patients	cross- sectional (cohort type accuracy study)	seriousª	not serious	serious ^b	not serious	none	28 (26 to 31)	56 (51 to 62)	84 (77 to 93)	
False negatives (patients incorrectly classified as not having COVID-19)								22 (19 to 24)	44 (38 to 49)	66 (57 to 73)	

Explanations

a. High and unclear risk of bias in all domains (e.g. patient selection, conduct of index test and reference standard, and patient flow and timing

b. High heterogeneity (different test brands, specimen types, timing of testing) (I² = 99% [99-100%])

Should rapid antigen test be used to diagnose COVID-19 in asymptomatic individuals suspected of COVID-19?

Patient or population: asymptomatic individuals suspected of COVID-19

Setting:

New test: rapid antigen test |Cut-off value: variable

Pooled sensitivity: 0.56 (95% CI: 0.51 to 0.62) | Pooled specificity: not computed

Test result	Number of r	esults per 1,000 patients te	sted (95% CI)	Number of participants	Certainty of the Evidence (GRADE)		
	Prevalence 5% Typically seen in	Prevalence 10% Typically seen in	Prevalence 15% Typically seen in	(studies)			
True positives	28 (26 to 31)	56 (51 to 62)	84 (77 to 93)	72858 (55)	⊕⊕⊖⊖ Low ^{a,b}		
False negatives	22 (19 to 24)	44 (38 to 49)	66 (57 to 73)				
True negatives					-		
False positives							
CI: confidence interval					1		

Explanations

a. High and unclear risk of bias in all domains (e.g. patient selection, conduct of index test and reference standard, and patient flow and timing

b. High heterogeneity $(I^2 = 99\% [99-100\%])$

5

%

10%

15%

D. EARLY PHASE

Question: Should rapid antigen test be used to diagnose COVID-19 in in the early phase of illness in individuals suspected of COVID-19??

Sensitivity	0.79 (95% CI: 0.75 to 0.82)
Specificity	(95% CI: to)

Outcome	№ of studies (№ of patients)	Study design		Factors that may decrease certainty of evidence					Effect per 1,000 patients tested		
			Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 5%	pre-test probability of 10%	pre-test probability of 15%	CoE
True positives (patients with COVID- 19)	_	cross- sectional (cohort type accuracy study)	ectional cohort /pe	not serious	serious ^b	not serious	none	40 (38 to 41)	79 (75 to 82)	119 (112 to 123)	
False negatives (patients incorrectly classified as not having COVID-19)								10 (9 to 12)	21 (18 to 25)	31 (27 to 38)	

Explanations

a. High and unclear risk of bias in all domains (e.g. patient selection, conduct of index test and reference standard, and patient flow and timing

b. High heterogeneity (different test brands, symptom status, specimen) (I² = 99% [99-100%])

Should rapid antigen test be used to diagnose COVID-19 in in the early phase of illness in individuals suspected of COVID-19??

Patient or population: in the early phase of illness in individuals suspected of COVID-19? Setting:

New test: rapid antigen test |Cut-off value: variable

Pooled sensitivity: 0.79 (95% CI: 0.75 to 0.82) | Pooled specificity: not calculated

Test result	Number of I	esults per 1,000 patients te	Number of participants	Certainty of the Evidence (GRADE)	
	Prevalence5% Typically seen in	Prevalence10% Typically seen in	Prevalence15% Typically seen in	(studies)	
True positives	40 (38 to 41)	79 (75 to 82)	119 (112 to 123)	28591 (54)	⊕⊕⊖⊖ Low ^{a,b}
False negatives	10 (9 to 12)	21 (18 to 25)	31 (27 to 38)		
True negatives				(0)	-
False positives					
CI: confidence interval					1

Explanations

a. High and unclear risk of bias in all domains (e.g. patient selection, conduct of index test and reference standard, and patient flow and timing

b. High heterogeneity $(I^2 = 99\% [99-100\%])$

5

%

10%

15%

E. SALIVA SPECIMEN

Question: Should rapid antigen test using saliva as specimen be used to diagnose COVID-19 in individuals suspected of COVID-19?

Sensitivity	0.57 (95% CI: 0.22 to 0.86)
Specificity	Not calculated

Outcome	Nº of studies (№ of patients)	Study design		Factors that ma	ay decrease cert	Effect per	r 1,000 patier	nts tested	Test accuracy	Importance		
			Risk of bias	Indirectness	Inconsistency	Imprecision	Publication bias	pre-test probability of 5%	pre-test probability of 10%	pre-test probability of 15%	CoE	
True positives (patients with COVID- 19)	7 studies 6148 patients	cross- sectional (cohort type accuracy study)	seriousª	not serious	serious ^b	serious ^c	none	28 (11 to 43)	57 (22 to 86)	85 (33 to 129)	⊕⊖⊖ ⊖ Very low	
False negatives (patients incorrectly classified as not having COVID- 19)								22 (7 to 39)	43 (14 to 78)	65 (21 to 117)		

Explanations

a. High and unclear risk of bias in all domains (e.g. patient selection, conduct of index test and reference standard, and patient flow and timing)

b. High heterogeneity $(I^2 = 99\% [99-100\%])$

c. Very wide estimates

Should rapid antigen test using saliva as specimen be used to diagnose COVID-19 in individuals suspected of COVID-19? Patient or population: individuals suspected of COVID-19

Setting:

New test: rapid antigen test – saliva-based |Cut-off value: variable

Pooled sensitivity:0.57 (95% CI: 0.22 to 0.86)|Pooled specificity: not calculated

Test result	Number of	results per 1,000 patients to	Number of participants	Certainty of the Evidence (GRADE)	
	Prevalence5% Typically seen in	Prevalence10% Typically seen in	Prevalence15% Typically seen in	(studies)	
True positives	28 (11 to 43)	57 (22 to 86)	85 (33 to 129)	6148 (7)	⊕⊖⊖⊖ Very low ^{a,b,c}
False negatives	22 (7 to 39)	43 (14 to 78)	65 (21 to 117)		
True negatives					
False positives					
CI: confidence interval					

Explanations

a. High and unclear risk of bias in all domains (e.g. patient selection, conduct of index test and reference standard, and patient flow and timing)

b. High heterogeneity $(I^2 = 99\% [99-100\%])$

c. Very wide estimates

5

%

10% 15%

F. REPEAT TESTING

Question: Should repeat testing using rapid antigen tests be used to diagnose COVID-19 in individuals suspected of COVID-19?

Sensitivity	0.63 to 0.81
Specificity	Not calculated

Outcome	Nº of studies (№ of patients)	Study design		Factors that m	ay decrease cer	tainty of evide	Effect per 1,000 patients tested			Test accuracy	
			Risk of bias	Indirectnes s	Inconsistency	Imprecision	Publication bias	pre-test probability of5%	pre-test probability of10%	pre-test probability of15%	CoE
True positives (patients with COVID- 19)	2 studies 4752 patients	cross- sectional (cohort type accuracy study)	serious ^a	not serious	serious ^b	serious ^c	none	32 to 41	63 to 81	95 to 122	⊕⊖⊖ ⊖ Very low
False negatives (patients incorrectly classified as not having COVID-19)								9 to 18	19 to 37	28 to 55	

Explanations

a. Unclear risk of bias in patient selection and conduct of reference standard

b. Heterogenous studies with inconsistent sensitivity values $(I^2 = 99\% [99-100\%])$

c. Wide estimates seen especially in the study of Mckay et al.

Should repeat testing using rapid antigen tests be used to diagnose COVID-19 in individuals suspected of COVID-19?

Patient or population: individuals suspected of COVID-19

Setting:

New test: repeat antigen testing |Cut-off value:

Range of sensitivities: 0.63 to 0.81| Range of specificities not calculated

Test result	Number of r	esults per 1,000 patients te	Number of participants	Certainty of the Evidence (GRADE)	
	Prevalence5% Typically seen in	Prevalence10% Typically seen in	Prevalence15% Typically seen in	(studies)	
True positives	32 to 41	63 to 81	95 to 122	4752 (2)	⊕⊖⊖⊖ Very low ^{a,b,c}
False negatives	9 to 18	19 to 37	28 to 55		
True negatives	0 to 0	0 to 0	0 to 0	(0)	-
False positives	950 to 950	900 to 900	850 to 850		

CI: confidence interval

Explanations

a. Unclear risk of bias in patient selection and conduct of reference standard

b. Heterogenous studies with inconsistent sensitivity values

c. Wide estimates seen especially in the study of Mckay et al.

5

%

10% 15%

F. CHILDREN

Question: Should rapid antigen test be used to diagnose COVID-19 in children suspected of COVID-19?

Sensitivity	0.79 (95% CI: 0.70 to 0.86)
Specificity	0.99 (95% CI: 0.96 to 1.00)

Outcome	Nº of studies	Study design		Factors that m	nay decrease ce	rtainty of evide	ence	Effect pe	nts tested	Test accuracy	
	(№ of patients)		Risk of bias	Indirectness	Inconsistenc y	Imprecision	Publication bias	pre-test probability of5%	pre-test probability of10%	pre-test probability of15%	CoE
True positives (patients with COVID-19)	11 studies 5101 patients	(cohort	seriou s ^a	not serious	serious ^b	not serious	none	40 (35 to 43)	79 (70 to 86)	119 (105 to 129)	
False negatives (patients incorrectly classified as not having COVID-19)							21 (14 to 30)	31 (21 to 45)			
True negatives (patients without COVID-19)	0 studies patients	cross- sectional (cohort	seriou s ^a	not serious	not serious	not serious	none	945 (916 to 949)	896 (868 to 899)	846 (819 to 849)	⊕⊕⊕⊖ Moderate
False positives (patients incorrectly classified as having COVID-19)		type accuracy study)						5 (1 to 34)	4 (1 to 32)	4 (1 to 31)	

Explanations

a. High and unclear risk of bias in all domains (e.g. patient selection, conduct of index test and reference standard, and patient flow and timing)

b. High heterogeneity ($I^2 = 99\%$ [99-100%])

Should rapid antigen test be used to diagnose COVID-19 in children suspected of COVID-19?

Patient or population: children suspected of COVID-19

Setting:

New test: rapid antigen tests |Cut-off value:

Pooled sensitivity:0.79 (95% CI: 0.70 to 0.86) Pooled specificity:0.99 (95% CI: 0.96 to 1.00)

Test result	Number of r	esults per 1,000 patients tes	Number of participants	Certainty of the Evidence (GRADE)	
	Prevalence5% Typically seen in	Prevalence10% Typically seen in	Prevalence15% Typically seen in	(studies)	
True positives	40 (35 to 43)	79 (70 to 86)	119 (105 to 129)	5101 (11)	⊕⊕⊖⊖ Low ^{a,b}
False negatives	10 (7 to 15)	21 (14 to 30)	31 (21 to 45)		
True negatives	945 (916 to 949)	896 (868 to 899)	846 (819 to 849)	5101 (11)	⊕⊕⊕⊖ Moderate ^a
False positives	5 (1 to 34)	4 (1 to 32)	4 (1 to 31)		wouldte

CI: confidence interval

Explanations

a. High and unclear risk of bias in all domains (e.g. patient selection, conduct of index test and reference standard, and patient flow and timing) b. High heterogeneity

G. OUTBREAK SETTINGS

Should rapid antigen test be used to diagnose COVID-19 in individuals suspected of COVID-19 during outbreaks?

Patient or population: individuals suspected to have COVID-19 (includes both symptomatic and asymptomatic patients) Range of sensitivity: 0.14 to 0.89 Range of specificity: 0.88 to 1.0

	No of			Factors that n	nay decrease cer	ainty of evide	Effect pe	T 1				
Outcomes	studies (No of patients)	Study design	Risk of bias	Indirectnes s	Inconsistency	Imprecisio n	Publication Bias	Pre-test probability of 5%	Pre-test probability of 10%	Pre-test probability of 15%	Test Accuracy CoE	
True positives (patients with COVID-19)	3 studies	Cross- sectional	VODV					7 to 45	14 to 89	21 to 134	⊕000	
False negatives (patients incorrectly classified as not having COVID-19)	(398 (398) patients)	(cohort type accuracy study)	very serious₃	not serious	serious⊧	serious	none	5 to 43	11 to 86	16 to 129	Very low	
True negatives (patients without COVID-19)		Cross-						836 to 950	792 to 900	748 to 850		
False positives (patients incorrectly classified as having COVID-19)	3 studies (398)	(398)	sectional (cohort type accuracy study)	very seriousª	not serious	serious	not serious	none	0 to 114	0 to 108	0 to 102	⊕⊕⊖⊖ Low

CI: confidence interval

Explanations

a. Majority of included studies have high risk of bias most notably in the patient selection, conduct of reference standard, and patient flow and timing

b. High heterogeneity across studies (different timing of testing, test brands, specimen type) - $l^2 = 99\%$

c. Wide confidence intervals

Should rapid antigen test be used to diagnose COVID-19 in asymptomatic individuals during outbreaks?

Patient or population: asymptomatic individuals in an outbreak setting Range sensitivity: 0.64 to 0.92

Range specificity: 0.92 to 0.98

	No of			Factors that n	nay decrease cer	tainty of evide	nce	Effect pe	T 1		
Outcomes	studies (No of patients)	Study design	Risk of bias	Indirectness	Inconsistency	Imprecision	Publication Bias	Pre-test probability of 5%	Pre-test probability of 10%	Pre-test probability of 15%	Test Accuracy CoE
True positives (patients with COVID-19)		Groop						32 to 46	64 to 92	96 to 138	
False negatives (patients incorrectly classified as not having COVID-19)	2 studies (1,127 patients)	Cross- sectional (cohort type accuracy study)	serious∗	ious₁ not serious serious⊦	serious∘	none	4 to 18	8 to 36	12 to 54	⊕⊖⊖⊖ VeryLow	
True negatives (patients without COVID-19)		Cross- sectional						874 to 931	828 to 882	782 to 833	
	2 studies (1,127 patients)	(cohort type accuracy study)	serious	not serious	serious	not serious	none	19 to 76	18 to 72	17 to 68	⊕⊕⊖⊖ Low

CI: confidence interval

Explanations

a. Unclear issues on patient selection domain

b. High heterogeneity across studies (different test brands, different timing of testing)

c. few studies, wide confidence interval

Appendix 7. Forest Plots

Canada .	-		-	-	Considering (OFN/ CI)			
Study	TP	FP	FN				Sensitivity (95% CI)	Specificity (95% CI)
Schildgen 2020 [C]	10	12	0	1	1.00 [0.69, 1.00]	0.08 [0.00, 0.36]		
Matsuda 2021 [B]	9	2	0	31	1.00 [0.66, 1.00] 0.97 [0.84, 1.00]	0.94 [0.80, 0.99] 1.00 [0.98, 1.00]		
Cassuto 2021 Courtellemont 2020	31	0 20	1 4	202 127	0.96 [0.90, 0.99]	0.86 [0.80, 0.91]		
Pilarowski 2021 [C]	124	1	6	540	0.95 [0.90, 0.98]	1.00 [0.99, 1.00]		
Van Der Moeren 202105	124	0	1	334	0.94 [0.71, 1.00]	1.00 [0.99, 1.00]		
Denina 2021	16	14	1	160	0.94 [0.71, 1.00]	0.92 [0.87, 0.96]		
Porte 2020a	77	0	5	45	0.94 [0.86, 0.98]	1.00 [0.92, 1.00]		
Porte 2020b [A]	30	ĭ	2	31	0.94 [0.79, 0.99]	0.97 [0.84, 1.00]	-	
Alemany 2020	388	ō	31	27	0.93 [0.90, 0.95]	1.00 [0.87, 1.00]		
Orsi 2021	50	ō	4	56	0.93 [0.82, 0.98]	1.00 [0.94, 1.00]		-
Bachman 2021 [D]	84	4	8	78	0.91 [0.84, 0.96]	0.95 [0.88, 0.99]	-	-
Bachman 2021 [C]	84	5	8	72	0.91 [0.84, 0.96]	0.94 [0.85, 0.98]	-	-
Nikolai 2021 (B)	31	0	3	62	0.91 [0.76, 0.98]	1.00 [0.94, 1.00]		-
Pollock 202104	116	1	12	376	0.91 [0.84, 0.95]	1.00 [0.99, 1.00]	-	
Porte 2020b [B]	29	1	3	31	0.91 [0.75, 0.98]	0.97 [0.84, 1.00]		
Turcato 2021 [A]	152	20	17	802	0.90 [0.84, 0.94]	0.98 [0.96, 0.99]	-	
Osmanodja 2021	62	1	7	203	0.90 [0.80, 0.96]	1.00 [0.97, 1.00]		
Bianco 2021	176	4	21	30	0.89 [0.84, 0.93]	0.88 [0.73, 0.97]	-	
Klein 2021	66	3	8	189	0.89 [0.80, 0.95]	0.98 [0.96, 1.00]		•
Kurihara 2021	32	0	4	825	0.89 [0.74, 0.97]	1.00 [1.00, 1.00]		
Jung 2021	29	4	4	271	0.88 [0.72, 0.97]	0.99 [0.96, 1.00]		
Stokes 202103 [B]	268	2	37	1334	0.88 [0.84, 0.91]	1.00 [0.99, 1.00]	•	
Stokes 202103 [A]	121	2	17	5	0.88 [0.81, 0.93]	0.71 [0.29, 0.96]	-	
lfko 2021	20	12	3	90	0.87 [0.66, 0.97]	0.88 [0.80, 0.94]		-
Kruger 2021	79	1	12	620	0.87 [0.78, 0.93]	1.00 [0.99, 1.00]	-	
Kolwijck 2021 [A]	39	0	6	388	0.87 [0.73, 0.95]	1.00 [0.99, 1.00]		
Nikolai 2021 [A]	31	0	5	96	0.86 [0.71, 0.95]	1.00 [0.96, 1.00]		
Bachman 2021 [B]	79	3	13	75	0.86 [0.77, 0.92]	0.96 [0.89, 0.99]		
Cento 2021			50	596	0.86 [0.81, 0.89]	0.97 [0.96, 0.98]		
Chiu 2021 [A]		14	11	260	0.85 [0.75, 0.92]	0.95 [0.92, 0.97]		
Weitzel 2020 [D] Kahn 2021	68 24	0 17	12 б	31 192	0.85 [0.75, 0.92] 0.85 [0.70, 0.94]	1.00 [0.89, 1.00] 0.92 [0.87, 0.95]		
Lindner 202105 [B]	34	1	6	105	0.85 [0.70, 0.94]	0.99 [0.95, 1.00]		
Shaikh 2021	39	16	7	137	0.85 [0.71, 0.94]	0.90 [0.84, 0.94]		
Schuit 2021 [A]	32	1	6	180	0.84 [0.69, 0.94]	0.99 [0.97, 1.00]		
Homza 2021 [B]	72	2	14	46	0.84 [0.74, 0.91]	0.96 [0.86, 0.99]	-	
Bachman 2021 [A]	75	2	15	77	0.83 [0.74, 0.90]	0.97 [0.91, 1.00]		-
James 2021 [A]	20	ō	4	91	0.83 [0.63, 0.95]	1.00 [0.96, 1.00]		
Jaaskelainen 2021 [C]	126	0	26	48	0.83 [0.76, 0.89]	1.00 [0.93, 1.00]	-	-
Chiu 2021 [B]	62	10	13	264	0.83 [0.72, 0.90]	0.96 [0.93, 0.98]		
Lindner 202105 [A]	33	2	7	104	0.82 [0.67, 0.93]	0.98 [0.93, 1.00]		•
Nomoto 2021	66	1	14	19	0.82 [0.72, 0.90]	0.95 [0.75, 1.00]		
Kruger 202108	113	3	24	346	0.82 [0.75, 0.88]	0.99 [0.98, 1.00]	+	
Kruger 2020(c)	32	7	7	972	0.82 [0.66, 0.92]	0.99 [0.99, 1.00]		
Matsuda 2021 [A]	18	1	4	43	0.82 [0.60, 0.95]	0.98 [0.88, 1.00]		
Bachman 2021 [G]	89	0	20	60	0.82 [0.73, 0.88]	1.00 [0.94, 1.00]		-
Jaaskelainen 2021 [B]	128	0	30	40	0.81 [0.74, 0.87]	1.00 [0.91, 1.00]	-	
Leli 2021	64	2	15	126	0.81 [0.71, 0.89]	0.98 [0.94, 1.00]		•
Bulilete 2021	70	2	17	588	0.80 [0.71, 0.88]	1.00 [0.99, 1.00]		•
Jaaskelainen 2021 [A]	119	0	29	40	0.80 [0.73, 0.86]	1.00 [0.91, 1.00]	+	
Pray 2021 [A]	32	2	8	185	0.80 [0.64, 0.91]	0.99 [0.96, 1.00]		
Albert 2020	43	0	11	358	0.80 [0.66, 0.89]	1.00 [0.99, 1.00]		
Nordgren 2021 [B]	124		32	131	0.79 [0.72, 0.86]	0.74 [0.67, 0.81]	-	•
Lindner 202104 [B]	31	1	8	247	0.79 [0.64, 0.91]	1.00 [0.98, 1.00]		
Fenollar 2020(a)	144	0	38	0	0.79 [0.72, 0.85]	Not estimable		-
Bachman 2021 [H]	87	1	23	190	0.79 [0.70, 0.86]	0.98 [0.91, 1.00]	<u>+</u>	
Ford 2021	30	1	8	180	0.79 [0.63, 0.90]	0.99 [0.97, 1.00]	-	
Ferte 2021	26	0	7	99	0.79 [0.61, 0.91]	1.00 [0.96, 1.00]		
Shah 2021 Linares 2020	221	2	б0 11	907 132	0.79 [0.73, 0.83]	1.00 [0.99, 1.00]	-	
Asai 2021	39 49	0 4	11 14	133 238	0.78 [0.64, 0.88]	1.00 [0.97, 1.00]		
Donapetry 2021	49	0	4	422	0.78 [0.66, 0.87] 0.78 [0.52, 0.94]	0.98 [0.96, 1.00] 1.00 [0.99, 1.00]		
Homza 2021 [E]	45		13	23	0.78 [0.65, 0.87]	0.56 [0.40, 0.72]		·
Herrera 2020 Herrera 2020	352	10	107	707	0.77 [0.73, 0.80]	0.99 [0.98, 1.00]		
Kanauija 2021	113	ž	35	221	0.76 [0.69, 0.83]	0.99 [0.97, 1.00]	-	
Young 2020	29	1	9	212	0.76 [0.60, 0.89]	1.00 [0.97, 1.00]		
		-	-			, (e.e., x.ev)	_	-

Amer 2021	32	0	10	0	0.76 [0.61, 0.88]	Not estimable	
McKay 2021	25	0	8	46	0.76 [0.58, 0.89]	1.00 [0.92, 1.00]	
Mockel 2021	67	0	22	182	0.75 [0.65, 0.84]	1.00 [0.98, 1.00]	+ •
Lindner 202104 [A]	29	2	10	246	0.74 [0.58, 0.87]	0.99 [0.97, 1.00]	_ _
Bachman 2021 [F]	81	1	29	59	0.74 [0.64, 0.82]	0.98 [0.91, 1.00]	
Schuit 2021 [B]	22	2	8	126	0.73 [0.54, 0.88]	0.98 [0.94, 1.00]	
Koeleman 2021 [D]	220	1	80	599	0.73 [0.68, 0.78]	1.00 [0.99, 1.00]	
Lhuillier 2021	65	ō	24	444	0.73 [0.63, 0.82]	1.00 [0.99, 1.00]	
Gremmels 2020(a)	99	ŏ	37		0.73 [0.65, 0.80]	1.00 [1.00, 1.00]	-
Koeleman 2021 [A]	29	0	11	40	0.72 [0.56, 0.85]	1.00 [0.91, 1.00]	
Kolwijck 2021 [B]	29	ŏ	11	352	0.72 [0.56, 0.85]	1.00 [0.99, 1.00]	_ _
Cerutti 2020	75	ŏ	29	81	0.72 [0.62, 0.80]	1.00 [0.96, 1.00]	·
Brihn 2021	49	ž	19	236	0.72 [0.60, 0.82]	0.99 [0.96, 1.00]	
Nordgren 2021 [A]	112	õ	44	130	0.72 [0.64, 0.79]	1.00 [0.97, 1.00]	
Prince-Guerra 2021 [C]	101	ŏ	41	520	0.71 [0.63, 0.78]	1.00 [0.99, 1.00]	
Sahuquillo 2021	24	ŏ	10	323	0.71 [0.53, 0.85]	1.00 [0.99, 1.00]	
Frediani 2021	93	ž	39	207	0.70 [0.62, 0.78]	0.99 [0.97, 1.00]	
PHE 2020(d) [HCW tested]	156	ō	67	207	0.70 [0.63, 0.76]	Not estimable	÷
Bachman 2021 [E]	75	ž	33	57	0.69 [0.60, 0.78]	0.97 [0.88, 1.00]	
Leixner 2021	65	1	29	297	0.69 [0.59, 0.78]	1.00 [0.98, 1.00]	
Kruger 2020(a)		49	- 29	663	0.67 [0.38, 0.88]	0.93 [0.91, 0.95]	
Fourati 2021 [C]	131	0	69	337	0.66 [0.58, 0.72]	1.00 [0.99, 1.00]	
	113	ŏ	63	651	. , .	1.00 [0.99, 1.00]	
Prince-Guerra 2021 [D] Prince-Guerra 2021 [A]	113	ŏ	63	651	0.64 [0.57, 0.71]		-
		1	12	32	0.64 [0.57, 0.71]	1.00 [0.99, 1.00]	
Homza 2021 [C]	21 25	5	12	32	0.64 [0.45, 0.80]	0.97 [0.84, 1.00]	
Koeleman 2021 [B]		0	30		0.63 [0.46, 0.77]	0.88 [0.73, 0.96]	
Weitzel 2020 [A]	49			30	0.62 [0.50, 0.73]	1.00 [0.88, 1.00]	
Fourati 2021 [D]	179	0	110	337	0.62 [0.56, 0.68]	1.00 [0.99, 1.00]	
Fourati 2020 [E]	182	0	113 113	337	0.62 [0.56, 0.67]	1.00 [0.99, 1.00]	
Fourati 2021 [B]				314	0.61 [0.55, 0.67]	0.93 [0.90, 0.96]	- I - N
Fourati 2021 [F]	175	0	114	337	0.61 [0.55, 0.66]	1.00 [0.99, 1.00]	
Homza 2021 [A]	46	2	30	54	0.61 [0.49, 0.72]	0.96 [0.88, 1.00]	- 7 - 7
Fourati 2020 [B]	175		116	314	0.60 [0.54, 0.66]	0.93 [0.90, 0.96]	
Fourati 2020 [D]	177	0	120	337	0.60 [0.54, 0.65]	1.00 [0.99, 1.00]	
Ristic 2021	25	0	18	77	0.58 [0.42, 0.73]	1.00 [0.95, 1.00]	
PHE 2020(c) [non-HCW tested]	214	5		1299	0.58 [0.52, 0.63]	1.00 [0.99, 1.00]	
Bornemann 2021	52	9	39		0.57 [0.46, 0.67]	0.99 [0.99, 1.00]	
Fourati 2020 [C]	163	0	132	337	0.55 [0.49, 0.61]	1.00 [0.99, 1.00]	
Koeleman 2021 [C]	22	1	18	39	0.55 [0.38, 0.71]	0.97 [0.87, 1.00]	
Billaud 2020	40	4	34	69	0.54 [0.42, 0.66]	0.95 [0.87, 0.98]	- T - T
PHE 2020(a)	95	0	83	940	0.53 [0.46, 0.61]	1.00 [1.00, 1.00]	<u>+</u>
Kruger 2020(b)	4	17	4	392	0.50 [0.16, 0.84]	0.96 [0.93, 0.98]	
Homza 2021 [D]	34	2	39	77	0.47 [0.35, 0.59]	0.97 [0.91, 1.00]	
Jegerlehner 2021	11	1	14	325	0.44 [0.24, 0.65]	1.00 [0.98, 1.00]	
Caruana 202104	39	1	51	202	0.43 [0.33, 0.54]	1.00 [0.97, 1.00]	
Fourati 2021 [E]	99	5	139	332	0.42 [0.35, 0.48]	0.99 [0.97, 1.00]	
Schildgen 2020 [B]	4	2	6	11	0.40 [0.12, 0.74]	0.85 [0.55, 0.98]	
Kiro 2021	52	2	84	216	0.38 [0.30, 0.47]	0.99 [0.97, 1.00]	- * - *
Fourati 2021 [A]	103		186	337	0.36 [0.30, 0.41]	1.00 [0.99, 1.00]	*
Fourati 2020 [A]	103	0		337	0.35 [0.30, 0.41]	1.00 [0.99, 1.00]	* *
Scohy 2020	25		52	9	0.32 [0.22, 0.44]	1.00 [0.66, 1.00]	
Ciotti 2021	12	0	27	11	0.31 [0.17, 0.48]	1.00 [0.72, 1.00]	
Schildgen 2020 [A]	3	3	7	10	0.30 [0.07, 0.65]	0.77 [0.46, 0.95]	
Blairon 2020	9	0	21	26	0.30 [0.15, 0.49]	1.00 [0.87, 1.00]	
Pollock 202105	52	9	124	56	0.30 [0.23, 0.37]	0.86 [0.75, 0.93]	÷ -•
Veyrenche 2020	13	0	32	20	0.29 [0.16, 0.44]	1.00 [0.83, 1.00]	
Weitzel 2020 [C]	13	0	65	31	0.17 [0.09, 0.27]	1.00 [0.89, 1.00]	
Nagura-Ikeda 2020	10	0	78	0	0.11 [0.06, 0.20]	Not estimable	-
Weitzel 2020 [B]	0	1	9	9	0.00 [0.00, 0.34]	0.90 [0.55, 1.00]	0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
							0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 1. Sensitivity and specificity of RAgT in symptomatic individuals

Study	TP					• • • • •	Sensitivity (95% CI)	
Martin-Sanchez 2021 Rilarowski 2021 (D)	214 14	3 1	7 1	657 855	0.97 [0.94, 0.99]	1.00 [0.99, 1.00]		
Pilarowski 2021 [D] Schildgen 2020 [C]		12	2	2	0.93 [0.68, 1.00] 0.85 [0.55, 0.98]	1.00 [0.99, 1.00] 0.14 [0.02, 0.43]		·
Montero 2021	35	8	14	2486	0.71 [0.57, 0.83]	1.00 [0.99, 1.00]		
Pena 2021	51	3		766	0.70 [0.58, 0.80]	1.00 [0.99, 1.00]		
Pollock 202104	110		54	1628	0.67 [0.59, 0.74]	0.99 [0.99, 1.00]		
Schuit 2021 [B]	60	б	41	1307	0.59 [0.49, 0.69]	1.00 [0.99, 1.00]		•
Schuit 2021 [A]	105	8	74	2130	0.59 [0.51, 0.66]	1.00 [0.99, 1.00]	-	•
Rottenstreich 2021	5	0	4	1317	0.56 [0.21, 0.86]	1.00 [1.00, 1.00]		•
Okoye 2021	24	0		2593	0.53 [0.38, 0.68]	1.00 [1.00, 1.00]		
Pollock 202105	83	12		1080	0.50 [0.42, 0.58]	0.99 [0.98, 0.99]		
Pray 2021 [B] Schildren 2020 (D)	7	14		840	0.41 [0.18, 0.67]	0.98 [0.97, 0.99]		
Schildgen 2020 [B] Prince-Guerra 2021 [B]	5 44	4 4	8 79	10 2465	0.38 [0.14, 0.68] 0.36 [0.27, 0.45]	0.71 [0.42, 0.92] 1.00 [1.00, 1.00]		
Schildgen 2020 [A]	4	1	9	13	0.31 [0.09, 0.61]	0.93 [0.66, 1.00]		
Nagura-Ikeda 2020	2	ō		0	0.13 [0.02, 0.40]	Not estimable	-	
Osmanodja 2021	ō	ō	1	105	0.00 [0.00, 0.97]	1.00 [0.97, 1.00]		•
PHE 2020(e)	0	1	0	537	Not estimable	1.00 [0.99, 1.00]		
Von Ahnen 2021	12	0	1	906	0.92 [0.64, 1.00]	1.00 [1.00, 1.00]		
Bianco 2021	93	44	8	531	0.92 [0.85, 0.97]	0.92 [0.90, 0.94]	-	•
Kruger 2021	12	0	2	374	0.86 [0.57, 0.98]	1.00 [0.99, 1.00]		•
Shrestha 2020	40	0	- 7	66	0.85 [0.72, 0.94]	1.00 [0.95, 1.00]		
Chiu 2021 [C]	32	18		22938	0.84 [0.69, 0.94]	1.00 [1.00, 1.00]		•
Alemany 2020	93	5	24	365	0.79 [0.71, 0.86]	0.99 [0.97, 1.00]	-	
Kruger 202108	.7	1	2	262	0.78 [0.40, 0.97]	1.00 [0.98, 1.00]		
Klein 2021	12	1 1	4 35	293	0.75 [0.48, 0.93]	1.00 [0.98, 1.00]		
Jegerlehner 2021 Gupta 2020	81 9	1	35 4	994 113	0.70 [0.61, 0.78] 0.69 [0.39, 0.91]	1.00 [0.99, 1.00] 0.99 [0.95, 1.00]		
Shah 2021	33	5		829	0.69 [0.54, 0.81]	0.99 [0.99, 1.00]		
Amer 2021	2	1	1	1	0.67 [0.09, 0.99]	0.50 [0.01, 0.99]		
Gremmels 2020(a)	2	ō	1	34	0.67 [0.09, 0.99]	1.00 [0.90, 1.00]		
McKay 2021	46	7	25	373	0.65 [0.53, 0.76]	0.98 [0.96, 0.99]		
Wachinger 2021	170	26	94	1306	0.64 [0.58, 0.70]	0.98 [0.97, 0.99]	-	
Kurihara 2021	30	2	17	491	0.64 [0.49, 0.77]	1.00 [0.99, 1.00]		•
Brihn 2021	49		32	1642	0.60 [0.49, 0.71]	0.99 [0.99, 1.00]		
Halfon 2021	20		15	0	0.57 [0.39, 0.74]	Not estimable		_
Bulilete 2021	30		23	82	0.57 [0.42, 0.70]	1.00 [0.96, 1.00]		
Kanauija 2021 Billoud 2020	23		18	72	0.56 [0.40, 0.72]	1.00 [0.95, 1.00]		
Billaud 2020	13 66		12 62	289	0.52 [0.31, 0.72]	1.00 [0.98, 1.00]		
James 2021 [B] Baro 2021 [B]	52	3	49	2093 182	0.52 [0.43, 0.60] 0.51 [0.41, 0.62]	1.00 [1.00, 1.00] 0.98 [0.95, 1.00]	-	
Turcato 2021 [B]	27		27	2355	0.50 [0.36, 0.64]	1.00 [0.99, 1.00]		
Homza 2021 [C]	4	Õ	4	64	0.50 [0.16, 0.84]	1.00 [0.94, 1.00]	_	-
Linares 2020	5	0	5	62	0.50 [0.19, 0.81]	1.00 [0.94, 1.00]	_	-
Leli 2021	26	20	28	303	0.48 [0.34, 0.62]	0.94 [0.91, 0.96]		•
Torres 202101	38	0	41	555	0.48 [0.37, 0.60]	1.00 [0.99, 1.00]		•
Kahn 2021		25		2273	0.48 [0.32, 0.64]	0.99 [0.98, 0.99]		•
Homza 2021 [E]	9	31		41	0.47 [0.24, 0.71]	0.57 [0.45, 0.69]		
Homza 2021 [A]	6	0	7	0	0.46 [0.19, 0.75]	Not estimable		
Baro 2021 [D]		20 7		165 130	0.46 [0.36, 0.56] 0.45 [0.24, 0.68]	0.89 [0.84, 0.93] 0.95 [0.90, 0.98]		
Fenollar 2020(b) Ford 2021	10 7	14	9	802	0.43 [0.24, 0.88]	0.98 [0.97, 0.99]		
Baro 2021 [C]	44		57	178	0.44 [0.34, 0.54]	0.96 [0.92, 0.98]	-	
Lhuillier 2021	13	O		259	0.43 [0.25, 0.63]	1.00 [0.99, 1.00]		
Cerutti 2020	2	Ō	3	140	0.40 [0.05, 0.85]	1.00 [0.97, 1.00]	_	•
Finana 2021	28	3	42	5431	0.40 [0.28, 0.52]	1.00 [1.00, 1.00]		
Homza 2021 [B]	8	5	12	154	0.40 [0.19, 0.64]	0.97 [0.93, 0.99]		•
Baro 2021 [A]	39		62	184	0.39 [0.29, 0.49]	0.99 [0.97, 1.00]		•
Ferte 2021	7		13	536	0.35 [0.15, 0.59]	1.00 [0.99, 1.00]		
Thakur 2021	29		55	592	0.35 [0.24, 0.46]	1.00 [0.99, 1.00]		
Caruana 202104	- 8		16	215	0.33 [0.16, 0.55]	1.00 [0.98, 1.00]		
Baro 2021 [E]	29 4		72 10	181 31	0.29 [0.20, 0.39]	0.98 [0.95, 0.99]		
Scohy 2020 Caruana 202105	4 2	2	5	107	0.29 [0.08, 0.58] 0.29 [0.04, 0.71]	1.00 [0.89, 1.00] 0.98 [0.94, 1.00]		
Homza 2021 [D]	4	5		93	0.29 [0.04, 0.71]	0.95 [0.88, 0.98]		
Stokes 202109	0	1		990	0.00 [0.00, 0.46]	1.00 [0.99, 1.00]	• · · · ·	
	-	_	-			,,,, *, 1	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 2. Sensitivity and specificity of RAgT in asymptomatic individuals

Study	ТР	FP	FN	TN	Soncitivity (05% CI)	Specificity (05% CI)	Sensitivity (95% CI) Specificity (95% CI)
Gili 2021	90	130	0	1518	1.00 [0.96, 1.00]	0.92 [0.91, 0.93]	
Ishii 2021 [D]	8	1	ō	123	1.00 [0.63, 1.00]	0.99 [0.96, 1.00]	
Kobayashi 2021 [A]	304	0	1	4615	1.00 [0.98, 1.00]	1.00 [1.00, 1.00]	
Chaimayo 2021	59	5	1	389	0.98 [0.91, 1.00]	0.99 [0.97, 1.00]	
Kobayashi 2021 [B] Courtellemont 2021	111 117	3	3 4	5272 127	0.97 [0.93, 0.99] 0.97 [0.92, 0.99]	1.00 [1.00, 1.00] 1.00 [0.97, 1.00]	
Kim 2021 [B]	94	ŏ	6	100	0.94 [0.87, 0.98]	1.00 [0.96, 1.00]	
Sood 2021	127	99	9	539	0.93 [0.88, 0.97]	0.84 [0.81, 0.87]	
Merino-Amador 2021	179	2	13	256	0.93 [0.89, 0.96]	0.99 [0.97, 1.00]	
Maniscalco 2021	12	1	1	91	0.92 [0.64, 1.00]	0.99 [0.94, 1.00]	
Alemany 2020 Ishii 2021 [C]	872 22	5 1	79 2	450 460	0.92 [0.90, 0.93] 0.92 [0.73, 0.99]	0.99 [0.97, 1.00] 1.00 [0.99, 1.00]	_
Yokota 2021	31	ź	3	307	0.91 [0.76, 0.98]	0.99 [0.98, 1.00]	
Seynaeve 2021 [C]	41	0	4	50	0.91 [0.79, 0.98]	1.00 [0.93, 1.00]	
Ishii 2021 [A]	10	0	1	260	0.91 [0.59, 1.00]	1.00 [0.99, 1.00]	
Bianco 2021	269	48 0	29	561	0.90 [0.86, 0.93]	0.92 [0.90, 0.94]	
Bouassa 2021 Kim 2021 [A]	90 27	ž	10 3	50 98	0.90 [0.82, 0.95] 0.90 [0.73, 0.98]	1.00 [0.93, 1.00] 0.98 [0.93, 1.00]	
Van Honacker 2021 [A]	52	21	6	18	0.90 [0.79, 0.96]	0.46 [0.30, 0.63]	- -
Agarwal 2021	26	2	3	436	0.90 [0.73, 0.98]	1.00 [0.98, 1.00]	
Pilarowski 2021 (A)	211	3	26	3062	0.89 [0.84, 0.93]	1.00 [1.00, 1.00]	• •
Berger 2021 [B]	170	1	21	337	0.89 [0.84, 0.93]	1.00 [0.98, 1.00]	
Pickering 2021 (A) Osmanodja 2021	89 62	1	11 8	99 308	0.89 [0.81, 0.94] 0.89 [0.79, 0.95]	0.99 [0.95, 1.00] 1.00 [0.98, 1.00]	
Karon 2021 [D]	174	ō	23	150	0.88 [0.83, 0.92]	1.00 [0.98, 1.00]	
Schildgen 2020 [C]	37	25	5	6	0.88 [0.74, 0.96]	0.19[0.07, 0.37]	
Seynaeve 2021 [D]	44	0	6	50	0.88 [0.76, 0.95]	1.00 [0.93, 1.00]	
Andreani 2021 [F]	109	32	15	83	0.88 [0.81, 0.93]	0.72 [0.63, 0.80]	· · · ·
Baccani 2021 [A] Karon 2021 [C]	29 164	7	4 23	161 150	0.88 [0.72, 0.97] 0.88 [0.82, 0.92]	0.96 [0.92, 0.98] 1.00 [0.98, 1.00]	
Kruger 2021	92	ĭ	14	1001	0.87 [0.79, 0.93]	1.00 [0.99, 1.00]	
Caputo 2021	436	102	67	3661	0.87 [0.83, 0.90]	0.97 [0.97, 0.98]	
Klein 2021	78	4	12	486	0.87 [0.78, 0.93]	0.99 [0.98, 1.00]	-
Berger 2021 [A]	106	0	18	411	0.85 [0.78, 0.91]	1.00 [0.99, 1.00]	
Kyritsi 2021 Igloi 2021	141 158	1 4	24 28	458 780	0.85 [0.79, 0.90] 0.85 [0.79, 0.90]	1.00 [0.99, 1.00] 0.99 [0.99, 1.00]	
Hartard 2021	39	2	7	330	0.85 [0.71, 0.94]	0.99 [0.98, 1.00]	-
Escriva 2021	99	0	18	331	0.85 [0.77, 0.91]	1.00 [0.99, 1.00]	
Tsai 2021	5	1	1	54	0.83 [0.36, 1.00]	0.98 [0.90, 1.00]	
Favresse 2021 [E]	80	0	16 10	92 37	0.83 [0.74, 0.90]	1.00 [0.96, 1.00]	÷ .
Van Honacker 2021 [C] Van Honacker 2021 [E]	48 48	0	10	40	0.83 [0.71, 0.91] 0.83 [0.71, 0.91]	0.93 [0.80, 0.98] 1.00 [0.91, 1.00]	
Eleftheriou 2021	42	ŏ	9	693	0.82 [0.69, 0.92]	1.00 [0.99, 1.00]	
Kruger 202108	120	4	26	611	0.82 [0.75, 0.88]	0.99 [0.98, 1.00]	
Gupta 2020	63	1	14	252	0.82 [0.71, 0.90]	1.00 [0.98, 1.00]	
Nsoga 2021 Gremmels 2020(b)	136 51	2	32 12	232 145	0.81 [0.74, 0.87] 0.81 [0.69, 0.90]	0.99 [0.97, 1.00] 1.00 [0.97, 1.00]	
Takeda 2020	50	ŏ	12	100	0.81 [0.69, 0.90]	1.00 [0.96, 1.00]	
Holzner 2021	367	8	89	1816	0.80 [0.77, 0.84]	1.00 [0.99, 1.00]	
Nash 2020	80	8	20	82	0.80 [0.71, 0.87]	0.91 [0.83, 0.96]	
Lindner 202104 [B]	31	1	8	247	0.79 [0.64, 0.91]	1.00 [0.98, 1.00]	-
Van Honacker 2021 [D] Bruzzone 2021 [A]	45 199	0	12 54	40 68	0.79 [0.66, 0.89] 0.79 [0.73, 0.84]	1.00 [0.91, 1.00] 1.00 [0.95, 1.00]	- T - I
Salvagno 2021	47	ĭ	13	113	0.78 [0.66, 0.88]	0.99 [0.95, 1.00]	- · ·
Amer 2021	54	5	15	9	0.78 [0.67, 0.87]	0.64 [0.35, 0.87]	- --
Karon 2021 [B]	153	4	44	146	0.78 [0.71, 0.83]	0.97 [0.93, 0.99]	
Pollock 202104	226	12	66	2004	0.77 [0.72, 0.82]	0.99 [0.99, 1.00]	i
Muhi 2021 Shah 2021	17 258	1 7	5 76	2580 1769	0.77 [0.55, 0.92] 0.77 [0.72, 0.82]	1.00 [1.00, 1.00] 1.00 [0.99, 1.00]	
Favresse 2021 [C]	74	3	22	89	0.77 [0.67, 0.85]	0.97 [0.91, 0.99]	
Pickering 2021 [B]	77	2	23	98	0.77 [0.68, 0.85]	0.98 [0.93, 1.00]	
Abusrewil 2021 [A]	83	0	25	123	0.77 [0.68, 0.84]	1.00 [0.97, 1.00]	
Pena-Rodriguez 2021 Torres 202102	79	0	25	265 154	0.76 [0.67, 0.84] 0.76 [0.67, 0.83]	1.00 [0.99, 1.00] 1.00 [0.98, 1.00]	
Homza 2021 [B]	88 81	7	28 26	204	0.76 [0.66, 0.83]	0.97 [0.93, 0.99]	
Pickering 2021 [C]	75	14	25	86	0.75 [0.65, 0.83]	0.86 [0.78, 0.92]	
Soleimani 2021][B]	174	0	58	169	0.75 [0.69, 0.80]	1.00 [0.98, 1.00]	
Kurihara 2021	62	2	21	1316	0.75 [0.64, 0.84]	1.00 [0.99, 1.00]	+
Landaas 2021 Pickering 2021 (D)	186 74	3	64 26	3738	0.74 [0.69, 0.80]	1.00 [1.00, 1.00]	
Pickering 2021 [D] Paul 2021 [A]	74 72	0	26 26	100 50	0.74 [0.64, 0.82] 0.73 [0.64, 0.82]	1.00 [0.96, 1.00] 1.00 [0.93, 1.00]	
Linares 2020	44	ŏ	16	195	0.73 [0.60, 0.84]	1.00 [0.98, 1.00]	i
Gremmels 2020(a)	101	0	38	1228	0.73 [0.64, 0.80]	1.00 [1.00, 1.00]	
lqbal 2021	92	1	35	42	0.72 [0.64, 0.80]	0.98 [0.88, 1.00]	
Halfon 2021 Kanaujia 2021	126	1	28	202	0.72 [0.62, 0.81]	0.99 [0.95, 1.00]	
Kanauija 2021 Bulilete 2021	136 100	2	53 40	293 670	0.72 [0.65, 0.78] 0.71 [0.63, 0.79]	0.99 [0.98, 1.00] 1.00 [0.99, 1.00]	
Kruttgen 2020	53	3	22	72	0.71 [0.59, 0.81]	0.96 [0.89, 0.99]	
_							

Com #1 2020		~		224	0.71/0.61 0.701	1 00 10 00 1 001		
Cerutti 2020 Homza 2021 [E]	77 54	0 50	32 23	221 64	0.71 [0.61, 0.79] 0.70 [0.59, 0.80]	1.00 [0.98, 1.00] 0.56 [0.47, 0.65]		
Nalumansi 2020	63	13	27	159	0.70 [0.59, 0.79]	0.92 [0.87, 0.96]		
Favresse 2021 [D]	67	0	29	92	0.70 [0.60, 0.79]	1.00 [0.96, 1.00]		•
Pickering 2021 [E]	69	2	31	98	0.69 [0.59, 0.78]	0.98 [0.93, 1.00]	-	
Seynaeve 2021 [A] Leli 2021	31 114	0 30	14 52	50 596	0.69 [0.53, 0.82] 0.69 [0.61, 0.76]	1.00 [0.93, 1.00] 0.95 [0.93, 0.97]		
McKay 2021	72	8	33	419	0.69 [0.59, 0.77]	0.98 [0.96, 0.99]	-	
Ford 2021	37	15	17	982	0.69 [0.54, 0.80]	0.98 (0.98, 0.99)		
Diao 2020	141	0	67	31	0.68 [0.61, 0.74]	1.00 [0.89, 1.00]	+	
Andreani 2021 [D]	84	0	40	115	0.68 [0.59, 0.76]	1.00 [0.97, 1.00]	-	
Favresse 2021 [B] Andreani 2021 [E]	65 83	0	31 41	92 115	0.68 [0.57, 0.77] 0.67 [0.58, 0.75]	1.00 [0.96, 1.00] 1.00 [0.97, 1.00]		
Favresse 2021 [A]	64	1	32	91	0.67 [0.56, 0.76]	0.99 [0.94, 1.00]		
Karon 2021 [A]	131	0	66	150	0.66 [0.59, 0.73]	1.00 [0.98, 1.00]	-	
Garcia 2021 (B)	113	5	57	181	0.66 [0.59, 0.74]	0.97 [0.94, 0.99]	-	
Brihn 2021 Lhuillier 2021	98 78	12	51 41	1878 703	0.66 [0.58, 0.73] 0.66 [0.56, 0.74]	0.99 [0.99, 1.00] 1.00 [0.99, 1.00]	-	
Soleimani 2021 [A]	152	ŏ	80	169	0.66 [0.59, 0.74]	1.00 [0.98, 1.00]		
Jegerlehner 2021	92	2	49	1319	0.65 [0.57, 0.73]	1.00 [0.99, 1.00]	-	
Pickering 2021 [F]	65	0	35	100	0.65 [0.55, 0.74]	1.00 [0.96, 1.00]		
Van Honacker 2021 [B]	39	0	21	40	0.65 [0.52, 0.77]	1.00 [0.91, 1.00]	-	-
Kahn 2021 Schuit 2021 [A]	57 149	39 9	31 84	2983 2436	0.65 [0.54, 0.75] 0.64 [0.57, 0.70]	0.99 [0.98, 0.99] 1.00 [0.99, 1.00]		
Andreani 2021 [B]	79	ĩ	45	114	0.64 [0.55, 0.72]	0.99 [0.95, 1.00]	-	
Schuit 2021 [B]	83	8	49	1456	0.63 [0.54, 0.71]	0.99 [0.99, 1.00]		
Ferte 2021	33	0	20	635	0.62 [0.48, 0.75]	1.00 [0.99, 1.00]		
Adnan 2021	91	2	56	190	0.62 [0.54, 0.70]	0.99 [0.96, 1.00]		
Homza 2021 [C] Stohr 2021 [B]	26 118	1	16 74	96 1387	0.62 [0.46, 0.76] 0.61 [0.54, 0.68]	0.99 [0.94, 1.00] 1.00 [0.99, 1.00]		
Seynaeve 2021 [B]	30	ò	19	50	0.61 [0.46, 0.75]	1.00 [0.93, 1.00]		-
Andreani 2021 [A]	75	0	49	115	0.60 [0.51, 0.69]	1.00 [0.97, 1.00]		•
Norz 2021	236	4	156	2747	0.60 [0.55, 0.65]	1.00 [1.00, 1.00]	+	
Garcia 2021 [A] Bourn 2021	102	0 54	68 121	186 745	0.60 [0.52, 0.67]	1.00 [0.98, 1.00]		
Boum 2021 Homza 2021 [A]	170 52	2	38	133	0.58 [0.53, 0.64] 0.58 [0.47, 0.68]	0.93 [0.91, 0.95] 0.99 [0.95, 1.00]	-	
Mertens 2020	76	1	56	195	0.58 [0.49, 0.66]	0.99 [0.97, 1.00]	-	
Wagenhauser 2021 [A]	13	0	10	783	0.57 [0.34, 0.77]	1.00 [1.00, 1.00]		
Olearo 2021 [D]	40	0	32	100	0.56 [0.43, 0.67]	1.00 [0.96, 1.00]		
Hirotsu 2020 Van Hanaskar 2021 (El	32 200	1 12	26 169	254 3826	0.55 [0.42, 0.68] 0.54 [0.49, 0.59]	1.00 [0.98, 1.00]		
Van Honacker 2021 [F] Billaud 2020	200	12	46	358	0.54 [0.43, 0.54]	1.00 [0.99, 1.00] 0.99 [0.97, 1.00]	-	
Andreani 2021 [C]	66	0	58	115	0.53 [0.44, 0.62]	1.00 [0.97, 1.00]		
Osterman 202108 [A]	56	9	51	294	0.52 [0.42, 0.62]	0.97 [0.94, 0.99]	-	
Paul 2021 [B]	51	0	47	50	0.52 [0.42, 0.62]	1.00 [0.93, 1.00]	-	
Osterman 2021 (B) Olearo 2021 (A)	224 42	8 0	221 42	318 100	0.50 [0.46, 0.55] 0.50 [0.39, 0.61]	0.98 [0.95, 0.99] 1.00 [0.96, 1.00]	-	
Schildgen 2020 [B]	21	7	21	24	0.50 [0.34, 0.66]	0.77 [0.59, 0.90]		
Lambert-Niclot 2020	47	0	47	44	0.50 [0.40, 0.60]	1.00 [0.92, 1.00]		-
Allan-Blitz 2021	1550	189	1603	15115	0.49 [0.47, 0.51]	0.99 [0.99, 0.99]		
Stohr 2021 [A]	86	2	89 55	1379 251	0.49 [0.42, 0.57]	1.00 [0.99, 1.00] 0.98 [0.96, 1.00]	-	
Liotti 2020 Wagenhauser 2021 [B]	49 7	4	8	1010	0.47 [0.37, 0.57] 0.47 [0.21, 0.73]	1.00 [0.99, 1.00]	_	
Olearo 2021 [C]	39	3	45	97	0.46 [0.35, 0.58]	0.97 [0.91, 0.99]		
Dierks 2021	5	2	б	431	0.45 [0.17, 0.77]	1.00 [0.98, 1.00]		
Osterman 2021 [A]	173	6	208	294	0.45 [0.40, 0.51]	0.98 [0.96, 0.99]		
Olearo 2021 (B) Seitz 2021	38	0	46 10	100 22	0.45 [0.34, 0.56] 0.44 [0.22, 0.69]	1.00 [0.96, 1.00]		
Abdelrazik 2021	81	ŏ	107	122	0.43 [0.36, 0.50]	1.00 [0.97, 1.00]		
Korenkov 2021	90	2	120	1816	0.43 [0.36, 0.50]	1.00 [1.00, 1.00]	-	
Kweon 2021 [A]	198	6	266	498	0.43 [0.38, 0.47]	0.99 [0.97, 1.00]		
Homza 2021 [D]	38	7	53 272	170 502	0.42 [0.32, 0.53] 0.41 [0.37, 0.46]	0.96 [0.92, 0.98] 1.00 [0.99, 1.00]		- 1
Kweon 2021 [B] Caruana 202104	192 47	0	67	417	0.41 [0.32, 0.51]	1.00 [0.99, 1.00]		
Pollock 202105	135	21	206	1136	0.40 [0.34, 0.45]	0.98 [0.97, 0.99]	+	100 C 100
Bella-Chavolla 2021	2963	479	4917		0.38 [0.37, 0.39]	0.95 [0.95, 0.96]		1 A A A A A A A A A A A A A A A A A A A
Baccani 2021 [C]	. 9	0	15	57	0.38 [0.19, 0.59]	1.00 [0.94, 1.00]	_	
Wagenhauser 2021 [C] Baccani 2021 [B]	23 10	12	40 18	3146 65	0.37 [0.25, 0.50] 0.36 [0.19, 0.56]	1.00 [0.99, 1.00] 1.00 [0.94, 1.00]	_	
Hauser 2021	68	ŏ	128	27	0.35 [0.28, 0.42]	1.00 [0.87, 1.00]	÷	-
Schildgen 2020 [A]	14	4	28	27	0.33 [0.20, 0.50]	0.87 [0.70, 0.96]		
Ishii 2021 [B]	3	0	б	84	0.33 [0.07, 0.70]	1.00 [0.96, 1.00]		
Mak 2020	51	0	109 72	0 296	0.32 [0.25, 0.40] 0.31 [0.23, 0.41]	Not estimable 0.98 [0.95, 0.99]		
Osterman 202108 [B] Scohy 2020	33 32	ó	74	42	0.30 [0.22, 0.40]	1.00 [0.92, 1.00]	-	
PHE 2020(b)	13	ő	33	105	0.28 [0.16, 0.43]	1.00 [0.97, 1.00]	-	
Uwamino 2021 [A]	21	0	55	0	0.28 [0.18, 0.39]	Not estimable		
Mboma 2021	22	15	58	3591	0.28 [0.18, 0.39]	1.00 [0.99, 1.00]	-	
Osterman 202108 [C] Osterman 202108 [D]	21	1	86	302 303	0.20 [0.13, 0.28]	1.00 [0.98, 1.00]	+	
Osterman 202108 [D] Oh 2021	19 7	0	88 33	303	0.18 [0.11, 0.26] 0.17 [0.07, 0.33]	1.00 [0.98, 1.00] 1.00 [0.95, 1.00]	-	
Nagura-Ikeda 2020	12	ŏ	91	0	0.12 [0.06, 0.19]	Not estimable	+	_
Uwamino 2021 [B]	4	0	37	0	0.10[0.03, 0.23]	Not estimable		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 3. Sensitivity and specificity of RAgT in individuals with mixed symptoms or unreported

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI)	
Kim 2021 [A]	7	0	0	0	1.00 [0.59, 1.00]	Not estimable		
Muhi 2021	15	0	0	156	1.00 [0.78, 1.00]	1.00 [0.98, 1.00]		
Cassuto 2021	31	0	1	202	0.97 [0.84, 1.00]	1.00 [0.98, 1.00]		
Courtellemont 2021	117	0	4	127	0.97 [0.92, 0.99]	1.00 [0.97, 1.00]	-	
Kim 2021 [B] Porte 2020a	64 72	0	3 4	0 42	0.96 [0.87, 0.99] 0.95 [0.87, 0.99]	Not estimable 1.00 [0.92, 1.00]		
Denina 2021	16	14	1	160	0.94 [0.71, 1.00]	0.92 [0.87, 0.96]		
Porte 2020b [A]	30	1	ź	31	0.94 [0.79, 0.99]	0.97 [0.84, 1.00]		
Pollock 202104	104	0	7	335	0.94 [0.87, 0.97]	1.00 [0.99, 1.00]		
Nomoto 2021	44	0	3	4	0.94 [0.82, 0.99]	1.00 [0.40, 1.00]		
Merino-Amador 2021	179	2	13	256	0.93 [0.89, 0.96]	0.99 [0.97, 1.00]		
Bachman 2021 [C] Bachman 2021 [D]	84	5 4	8 8	72 78	0.91 [0.84, 0.96]	0.94 [0.85, 0.98]	+ +	
Bachman 2021 [D] Seynaeve 2021 [C]	84 41	0	4	50	0.91 [0.84, 0.96] 0.91 [0.79, 0.98]	0.95 [0.88, 0.99] 1.00 [0.93, 1.00]		
Kruger 2021	69	ĩ	7	533	0.91 [0.82, 0.96]	1.00 [0.99, 1.00]		
Porte 2020b [B]	29	1	3	31	0.91 [0.75, 0.98]	0.97 [0.84, 1.00]		
Garcia 2021 [B]	66	0	7	0	0.90 [0.81, 0.96]	Not estimable	-	
Bianco 2021	269	48	29	561	0.90 [0.86, 0.93]	0.92 [0.90, 0.94]		
Kweon 2021 [A]	135	0	16	0	0.89 [0.83, 0.94]	Not estimable		
Berger 2021 [B] Osmanodja 2021	170 62	1 1	21 8	337 308	0.89 [0.84, 0.93] 0.89 [0.79, 0.95]	1.00 [0.98, 1.00] 1.00 [0.98, 1.00]		
Kweon 2021 [B]	135	0	0 18	0	0.89 [0.79, 0.93]	Not estimable		
Seynaeve 2021 [D]	44	ŏ	6	50	0.88 [0.76, 0.95]	1.00 [0.93, 1.00]		
Stokes 202103 [B]	268	2	37	1334	0.88 [0.84, 0.91]	1.00 [0.99, 1.00]		
Stokes 202103 [A]	121	2	17	5	0.88 [0.81, 0.93]	0.71 [0.29, 0.96]	••-	
Garcia 2021 [A]	64	0	9	0	0.88 [0.78, 0.94]	Not estimable		
lfko 2021 Kataliata 2024 (M)	20		3	90	0.87 [0.66, 0.97]	0.88 [0.80, 0.94]		
Kolwijck 2021 (A) Liporos 2020	39 32	0	6 5	388 846	0.87 [0.73, 0.95] 0.86 [0.71, 0.95]	1.00 [0.99, 1.00]		
Linares 2020 Kruger 202108	102	z	16	303	0.86 [0.79, 0.93]	1.00 [1.00, 1.00] 0.99 [0.98, 1.00]		
Gupta 2020	49	ō	-~	134	0.86 [0.74, 0.94]	1.00 [0.97, 1.00]		
Bachman 2021 [B]	79	3	13	75	0.86 [0.77, 0.92]	0.96 [0.89, 0.99]		
McKay 2021	48	0	8	0	0.86 [0.74, 0.94]	Not estimable		
Berger 2021 [A]	106	0	18	411	0.85 [0.78, 0.91]	1.00 [0.99, 1.00]	-	
Kyritsi 2021	141	1	24	458	0.85 [0.79, 0.90]	1.00 [0.99, 1.00]		
Chiu 2021 [A] Lindner 202105 [B]	64 34	14 1	11 б	260 105	0.85 [0.75, 0.92] 0.85 [0.70, 0.94]	0.95 [0.92, 0.97] 0.99 [0.95, 1.00]	-+ +	
Weitzel 2020 [D]	68	ō	12	31	0.85 [0.75, 0.94]	1.00 [0.89, 1.00]		
Shaikh 2021	39	16	7	137	0.85 [0.71, 0.94]	0.90 [0.84, 0.94]	+	
Escriva 2021	99	0	18	331	0.85 [0.77, 0.91]	1.00 [0.99, 1.00]		
Amer 2021	31	1	б	0	0.84 [0.68, 0.94]	0.00 [0.00, 0.97]		
Bachman 2021 [A]	75	2	15	77	0.83 [0.74, 0.90]	0.97 [0.91, 1.00]		
Jaaskelainen 2021 [C] Holfon 2021	126	0	26	38	0.83 [0.76, 0.89]	1.00 [0.91, 1.00]	· · ·	
Halfon 2021 Chiu 2021 [B]	29 62	0 10	6 13	0 264	0.83 [0.66, 0.93] 0.83 [0.72, 0.90]	Not estimable 0.96 [0.93, 0.98]		
Lindner 202105 [A]	33	ž	7	104	0.82 [0.67, 0.93]	0.98 [0.93, 1.00]		
Shah 2021	199	2	44	684	0.82 [0.76, 0.87]	1.00 [0.99, 1.00]		
Bachman 2021 [G]	89	0	20	60	0.82 [0.73, 0.88]	1.00 [0.94, 1.00]		
Jaaskelainen 2021 (B)	128	0	30	40	0.81 [0.74, 0.87]	1.00 [0.91, 1.00]		
Jaaskelainen 2021 [A]	119	0	29	40	0.80 [0.73, 0.86]	1.00 [0.91, 1.00]	-	
Kruger 2020(c)	28	7	7	907	0.80 [0.63, 0.92]	0.99 [0.98, 1.00] 1.00 [0.99, 1.00]		
Albert 2020 Ristic 2021	43 19	0	11 5	358 39	0.80 [0.66, 0.89] 0.79 [0.58, 0.93]	1.00 [0.99, 1.00]		
Bachman 2021 [H]	87	ĭ	23	59	0.79 [0.70, 0.86]	0.98 [0.91, 1.00]		
Asai 2021	49	4	14	238	0.78 [0.66, 0.87]	0.98 [0.96, 1.00]		
Donapetry 2021	14	0	4	422	0.78 [0.52, 0.94]	1.00 [0.99, 1.00]		
Young 2020	29	1	9	212	0.76 [0.60, 0.89]	1.00 [0.97, 1.00]		
Torres 202102	88	0	28	154	0.76 [0.67, 0.83]	1.00 [0.98, 1.00]	-	
Gremmels 2020(a) Bachman 2021 [F]	75 81	0 1	26 29	846 59	0.74 [0.65, 0.82] 0.74 [0.64, 0.82]	1.00 [1.00, 1.00] 0.98 [0.91, 1.00]		
Kolwijck 2021 [B]	29	ō	11	352	0.72 [0.56, 0.85]	1.00 [0.99, 1.00]		
Fourati 2021 [B]	143	ŏ	57	0	0.71 [0.65, 0.78]	Not estimable	-	
Prince-Guerra 2021 [C]	101	0	41	520	0.71 [0.63, 0.78]	1.00 [0.99, 1.00]		
Fourati 2020 [E]	142	0	58	0	0.71 [0.64, 0.77]	Not estimable	+	
Fourati 2021 [D]	142	0	58	0	0.71 [0.64, 0.77]	Not estimable	-	
Fourati 2020 [B] Sabuquillo 2021	141 74	0	58 10	0 323	0.71 [0.64, 0.77]	Not estimable		
Sahuquillo 2021 Frediani 2021	24 93	2	10 39	323 207	0.71 [0.53, 0.85] 0.70 [0.62, 0.78]	1.00 [0.99, 1.00] 0.99 [0.97, 1.00]		
Bachman 2021 [E]	75	2	33	57	0.69 [0.60, 0.78]	0.97 [0.88, 1.00]		
Seynaeve 2021 [A]	31	0	14	50	0.69 [0.53, 0.82]	1.00 [0.93, 1.00]		

Philippine COVID-19 Living Clinical Practice Guidelines

Fourati 2020 [D]	137	0	63	0	0.69 [0.62, 0.75]	Not estimable	-
Fourati 2021 [F]	137	0	63	0	0.69 [0.62, 0.75]	Not estimable	-
Fourati 2020 [C]	131	0	69	0	0.66 [0.58, 0.72]	Not estimable	+
Fourati 2021 [C]	131	0	69	0	0.66 [0.58, 0.72]	Not estimable	+
Schuit 2021 [A]	92	2	49	1539	0.65 [0.57, 0.73]	1.00 [1.00, 1.00]	
Wachinger 2021	170	26	94	1306	0.64 [0.58, 0.70]	0.98 [0.97, 0.99]	
Schuit 2021 [B]	67	б	38	1137	0.64 [0.54, 0.73]	0.99 [0.99, 1.00]	
Weitzel 2020 [A]	49	0	30	30	0.62 [0.50, 0.73]	1.00 [0.88, 1.00]	
Sevnaeve 2021 [B]	30	0	19	50	0.61 [0.46, 0.75]	1.00 [0.93, 1.00]	
Olearo 2021 [D]	40	0	32	100	0.56 [0.43, 0.67]	1.00 [0.96, 1.00]	
Fourati 2021 [E]	82	0	67	0	0.55 [0.47, 0.63]	Not estimable	
Olearo 2021 [A]	42	0	42	100	0.50 [0.39, 0.61]	1.00 [0.96, 1.00]	
Olearo 2021 [C]	39	3	45	97	0.46 [0.35, 0.58]	0.97 [0.91, 0.99]	
Olearo 2021 [B]	38	0	46	100	0.45 [0.34, 0.56]	1.00 [0.96, 1.00]	
Fourati 2020 [A]	90	0	109	0	0.45 [0.38, 0.52]	Not estimable	+
Fourati 2021 [A]	90	0	110	0	0.45 [0.38, 0.52]	Not estimable	+
Kruger 2020(b)	3	0	4	0	0.43 [0.10, 0.82]	Not estimable	_
Veyrenche 2020	9	1	13	31	0.41 [0.21, 0.64]	0.97 [0.84, 1.00]	
Scohy 2020	32	0	74	42	0.30 [0.22, 0.40]	1.00 [0.92, 1.00]	
Pollock 202105	49	б	116	25	0.30 [0.23, 0.37]	0.81 [0.63, 0.93]	
Weitzel 2020 [C]	13	0	65	31	0.17 [0.09, 0.27]	1.00 [0.89, 1.00]	
Nagura-Ikeda 2020	7	0	41	0	0.15 [0.06, 0.28]	Not estimable	
Weitzel 2020 [B]	0	1	9	9	0.00 [0.00, 0.34]	0.90 [0.55, 1.00]	<mark>● · · ·</mark> · · · · · · · · · · · • • · · • • • ·
							0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

Figure 4. Sensitivity and specificity of RAgT in early testing (0-7 days after symptom onset)

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Kruger 2020(b)	1	0	0	0	1.00 [0.03, 1.00]	Not estimable		
Kruger 2020(c)	4	0	0	54	1.00 [0.40, 1.00]	1.00 [0.93, 1.00]		-
Kim 2021 [B]	30	0	3	0	0.91 [0.76, 0.98]	Not estimable		
Kim 2021 [A]	17	0	2	0	0.89 [0.67, 0.99]	Not estimable		
Porte 2020a	4	0	1	3	0.80 [0.28, 0.99]	1.00 [0.29, 1.00]	_	
Gupta 2020	5	0	2	5	0.71 [0.29, 0.96]	1.00 [0.48, 1.00]	_	
Pollock 202104	12	1	5	41	0.71 [0.44, 0.90]	0.98 [0.87, 1.00]		
Amer 2021	21	1	9	0	0.70 [0.51, 0.85]	0.00 [0.00, 0.97]		
Schuit 2021 [B]	9	1	4	191	0.69 [0.39, 0.91]	0.99 [0.97, 1.00]		
Halfon 2021	11	0	5	0	0.69 [0.41, 0.89]	Not estimable		
Nomoto 2021	22	1	11	15	0.67 [0.48, 0.82]	0.94 [0.70, 1.00]		
Prince-Guerra 2021 [D]	113	0	63	651	0.64 [0.57, 0.71]	1.00 [0.99, 1.00]		•
Kruger 2021	8	0	5	57	0.62 [0.32, 0.86]	1.00 [0.94, 1.00]		-
Schuit 2021 [A]	26	4	20	461	0.57 [0.41, 0.71]	0.99 [0.98, 1.00]		•
Kruger 202108	7	0	6	26	0.54 [0.25, 0.81]	1.00 [0.87, 1.00]		
Linares 2020	7	0	6	0	0.54 [0.25, 0.81]	Not estimable		
McKay 2021	24	б	23	35	0.51 [0.36, 0.66]	0.85 [0.71, 0.94]		
Gremmels 2020(a)	5	0	5	181	0.50 [0.19, 0.81]	1.00 [0.98, 1.00]		•
Kweon 2021 [A]	199	0	221	0	0.47 [0.43, 0.52]	Not estimable	+	
Fourati 2020 [D]	38	0	51	0	0.43 [0.32, 0.54]	Not estimable		
Fourati 2021 [F]	38	0	51	0	0.43 [0.32, 0.54]	Not estimable		
Fourati 2021 [D]	37	0	52	0	0.42 [0.31, 0.53]	Not estimable		
Fourati 2020 [E]	36	0	51	0	0.41 [0.31, 0.52]	Not estimable		
Kweon 2021 [B]	163	0	260	0	0.39 [0.34, 0.43]	Not estimable	+	
Garcia 2021 [B]	21	0	34	0	0.38 [0.25, 0.52]	Not estimable		
Fourati 2020 [B]	32	0	53	0	0.38 [0.27, 0.49]	Not estimable		
Fourati 2021 [B]	33	0	56	0	0.37 [0.27, 0.48]	Not estimable		
Fourati 2021 [C]	31	0	58	0	0.35 [0.25, 0.46]	Not estimable		
Fourati 2020 [C]	30	0	57	0	0.34 [0.25, 0.45]	Not estimable		
Ristic 2021	6	0	13	38	0.32 [0.13, 0.57]	1.00 [0.91, 1.00]		
Garcia 2021 [A]	17	0	38	0	0.31 [0.19, 0.45]	Not estimable		
Veyrenche 2020	4	0	10	0	0.29 [0.08, 0.58]	Not estimable		
Pollock 202105	3	3	8	31	0.27 [0.06, 0.61]	0.91 [0.76, 0.98]		-+
Fourati 2021 [E]	17	0	72	0	0.19 [0.12, 0.29]	Not estimable		
Fourati 2020 [A]	13	0	73	0	0.15 [0.08, 0.24]	Not estimable	-	
Fourati 2021 [A]	13	0	76	0	0.15 [0.08, 0.24]	Not estimable	-	
Nagura-Ikeda 2020	3	0	37	0	0.07 [0.02, 0.20]	Not estimable		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 5. Sensitivity and specificity of RAgT in late testing (> 7 days)

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Denina 2021	16	14	1	160	0.94 [0.71, 1.00]	0.92 [0.87, 0.96]		•
Sood 2021	127	99	9	539	0.93 [0.88, 0.97]	0.84 [0.81, 0.87]	-	• • •
Jung 2021	29	4	4	271	0.88 [0.72, 0.97]	0.99 [0.96, 1.00]		•
Shaikh 2021	39	16	- 7	137	0.85 [0.71, 0.94]	0.90 [0.84, 0.94]		+
Eleftheriou 2021	42	0	9	693	0.82 [0.69, 0.92]	1.00 [0.99, 1.00]		
Donapetry 2021	14	0	4	422	0.78 [0.52, 0.94]	1.00 [0.99, 1.00]		
Sahuquillo 2021	24	0	10	323	0.71 [0.53, 0.85]	1.00 [0.99, 1.00]		
Pollock 202104	94	- 7	41	786	0.70 [0.61, 0.77]	0.99 [0.98, 1.00]		•
Lhuillier 2021	78	0	41	703	0.66 [0.56, 0.74]	1.00 [0.99, 1.00]	-	
Albert 2020	5	0	3	- 77	0.63 [0.24, 0.91]	1.00 [0.95, 1.00]	_	-
Pollock 202105	26	7	20	200	0.57 [0.41, 0.71]	0.97 [0.93, 0.99]	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 6. Sensitivity and specificity of RAgT in special population - children

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Matsuda 2021 [B]	9	2	0	31	1.00 [0.66, 1.00]	0.94 [0.80, 0.99]		
Von Ahnen 2021	12	0	1	906	0.92 [0.64, 1.00]	1.00 [1.00, 1.00]		•
Matsuda 2021 [A]	18	1	4	43	0.82 [0.60, 0.95]	0.98 [0.88, 1.00]		
Amer 2021	54	5	15	9	0.78 [0.67, 0.87]	0.64 [0.35, 0.87]		
Dierks 2021	5	2	б	431	0.45 [0.17, 0.77]	1.00 [0.98, 1.00]		0 0.2 0.4 0.6 0.8 1

Figure 7. Sensitivity and specificity of RAgT in special population - healthcare workers



Figure 8. Sensitivity and specificity of RAgT use in symptomatic individuals in an outbreak settings

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bianco 2021	93	44	8	531	0.92 [0.85, 0.97]	0.92 [0.90, 0.94]	-	•
McKay 2021	46	7	25	373	0.65 [0.53, 0.76]	0.98 [0.96, 0.99]		

Figure 9. Sensitivity and specificity of RAgT use in asymptomatic individuals in an outbreak settings

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Matsuda 2021 [B]	9	2	0	31	1.00 [0.66, 1.00]	0.94 [0.80, 0.99]		
Alemany 2020	872	- 5	79	450	0.92 [0.90, 0.93]	0.99 [0.97, 1.00]	•	
Stokes 202103 [B]	268	2	37	1334	0.88 [0.84, 0.91]	1.00 [0.99, 1.00]	•	•
Stokes 202103 [A]	121	2	17	5	0.88 [0.81, 0.93]	0.71 [0.29, 0.96]	-	
Kruger 2021	92	1	14	1001	0.87 [0.79, 0.93]	1.00 [0.99, 1.00]	-	
Klein 2021	78	4	12	486	0.87 [0.78, 0.93]	0.99 [0.98, 1.00]	-	•
Kolwijck 2021 [A]	39	0	6	388	0.87 [0.73, 0.95]	1.00 [0.99, 1.00]		•
Berger 2021 [A]	106	0	18	411	0.85 [0.78, 0.91]	1.00 [0.99, 1.00]	-	•
Escriva 2021	99	0	18	331	0.85 [0.77, 0.91]	1.00 [0.99, 1.00]		•
Jaaskelainen 2021 (C)	126	0	26	38	0.83 [0.76, 0.89]	1.00 [0.91, 1.00]	+	
Eleftheriou 2021	42	0	9	693	0.82 [0.69, 0.92]	1.00 [0.99, 1.00]		•
Gremmels 2020(b)	51	0	12	145	0.81 [0.69, 0.90]	1.00 [0.97, 1.00]		•
Nsoga 2021	136	2	32	232	0.81 [0.74, 0.87]	0.99 [0.97, 1.00]	-	•
Albert 2020	43	0	11	358	0.80 [0.66, 0.89]	1.00 [0.99, 1.00]		•
Fenollar 2020(a)	144	0	38	0	0.79 [0.72, 0.85]	Not estimable	-	
Van Honacker 2021 [D]	45	0	12	40	0.79 [0.66, 0.89]	1.00 [0.91, 1.00]		
Donapetry 2021	14	0	4	422	0.78 [0.52, 0.94]	1.00 [0.99, 1.00]		•
Muhi 2021	17	1	5	2580	0.77 [0.55, 0.92]	1.00 [1.00, 1.00]		•
Abusrewil 2021 (H)	10	0	3	10	0.77 [0.46, 0.95]	1.00 [0.69, 1.00]		
Soleimani 2021][B]	174	0	58	169	0.75 [0.69, 0.80]	1.00 [0.98, 1.00]	-	•
Landaas 2021	186	3	64	3738	0.74 [0.69, 0.80]	1.00 [1.00, 1.00]	-	•
Linares 2020	44	0	16	195	0.73 [0.60, 0.84]	1.00 [0.98, 1.00]		•
Gremmels 2020(a)	101	0	38	1228	0.73 [0.64, 0.80]	1.00 [1.00, 1.00]		•
Kolwijck 2021 [B]	29	0	11	352	0.72 [0.56, 0.85]	1.00 [0.99, 1.00]		•
Halfon 2021	72	1	28	99	0.72 [0.62, 0.81]	0.99 [0.95, 1.00]		-
Nordgren 2021 [A]	112	0	44	130	0.72 [0.64, 0.79]	1.00 [0.97, 1.00]	-	•
Bulilete 2021	100	2	40	670	0.71 [0.63, 0.79]	1.00 [0.99, 1.00]	-	
Sahuquillo 2021	24	0	10	323	0.71 [0.53, 0.85]	1.00 [0.99, 1.00]		•
Favresse 2021 (B)	65	0	31	92	0.68 [0.57, 0.77]	1.00 [0.96, 1.00]		•
Lhuillier 2021	79	0	40	703	0.66 [0.57, 0.75]	1.00 [0.99, 1.00]		•
Ferte 2021	33	0	20	635	0.62 [0.48, 0.75]	1.00 [0.99, 1.00]		•
Andreani 2021 (A)	75	0	49	115	0.60 [0.51, 0.69]	1.00 [0.97, 1.00]		•
Garcia 2021 [A]	102	0	68	186	0.60 [0.52, 0.67]	1.00 [0.98, 1.00]		•
Fourati 2021 [C]	162	0	127	337	0.56 [0.50, 0.62]	1.00 [0.99, 1.00]	+	•
Fourati 2020 [C]	163	0	132	337	0.55 [0.49, 0.61]	1.00 [0.99, 1.00]	+	•
Billaud 2020	53	- 5	46	358	0.54 [0.43, 0.64]	0.99 [0.97, 1.00]		
Schildgen 2020 (B)	21	- 7	21	24	0.50 [0.34, 0.66]	0.77 [0.59, 0.90]		
Torres 202101	38	0	41	555	0.48 [0.37, 0.60]	1.00 [0.99, 1.00]		•
Wagenhauser 2021 (B)	7	4	8	1010	0.47 [0.21, 0.73]	1.00 [0.99, 1.00]		•
Fenollar 2020(b)	10	- 7	12	130	0.45 [0.24, 0.68]	0.95 [0.90, 0.98]		-
Olearo 2021 [B]	38	0	46	100	0.45 [0.34, 0.56]	1.00 [0.96, 1.00]		•
Baro 2021 [A]	39	1	62	184	0.39 [0.29, 0.49]	0.99 [0.97, 1.00]		•
Mboma 2021	22	15	58	3591	0.28 [0.18, 0.39]	1.00 [0.99, 1.00]		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 10. Sensitivity and specificity of Panbio™ Ag-RDT (Abbott)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Chaimayo 2021	59	5	1	389	0.98 [0.91, 1.00]	0.99 [0.97, 1.00]	-	•
Nikolai 2021 (B)	31	0	3	62	0.91 [0.76, 0.98]	1.00 [0.94, 1.00]		-
Turcato 2021 [A]	152	20	17	802	0.90 [0.84, 0.94]	0.98 [0.96, 0.99]	-	•
Agarwal 2021	26	2	3	436	0.90 [0.73, 0.98]	1.00 [0.98, 1.00]		
Berger 2021 [B]	170	1	21	337	0.89 [0.84, 0.93]	1.00 [0.98, 1.00]	-	
Nikolai 2021 [A]	31	0	5	96	0.86 [0.71, 0.95]	1.00 [0.96, 1.00]		•
Lindner 202105 [B]	34	1	6	105	0.85 [0.70, 0.94]	0.99 [0.95, 1.00]		
Van Honacker 2021 (E)	48	0	10	40	0.83 [0.71, 0.91]	1.00 [0.91, 1.00]		
Lindner 202105 (A)	33	2	7	104	0.82 [0.67, 0.93]	0.98 [0.93, 1.00]		•
Gupta 2020	63	1	14	252	0.82 [0.71, 0.90]	1.00 [0.98, 1.00]		
Jaaskelainen 2021 [B]	128	0	30	40	0.81 [0.74, 0.87]	1.00 [0.91, 1.00]	-	
Holzner 2021	367	8	89	1816	0.80 [0.77, 0.84]	1.00 [0.99, 1.00]	•	
Lindner 202104 [B]	31	1	8	247	0.79 [0.64, 0.91]	1.00 [0.98, 1.00]		
Bruzzone 2021 [A]	199	0	54	68	0.79 [0.73, 0.84]	1.00 [0.95, 1.00]	+	-
Amer 2021	54	5	15	9	0.78 [0.67, 0.87]	0.64 [0.35, 0.87]		
Kruger 2020(c)	36	9	11	1207	0.77 [0.62, 0.88]	0.99 [0.99, 1.00]		
Pena-Rodriguez 2021	79	0	25	265	0.76 [0.67, 0.84]	1.00 [0.99, 1.00]		
Lindner 202104 (A)	29	2	10	246	0.74 [0.58, 0.87]	0.99 [0.97, 1.00]		
Cerutti 2020	77	0	32	221	0.71 [0.61, 0.79]	1.00 [0.98, 1.00]		
Nalumansi 2020	63	13	27	159	0.70 [0.59, 0.79]	0.92 [0.87, 0.96]		-
Pena 2021	51	3	22	766	0.70 [0.58, 0.80]	1.00 [0.99, 1.00]		
Wachinger 2021	170	26	94	1306	0.64 [0.58, 0.70]	0.98 [0.97, 0.99]	-	•
Andreani 2021 (B)	79	1	45	114	0.64 [0.55, 0.72]	0.99 [0.95, 1.00]		•
Homza 2021 [C]	26	1	16	96	0.62 [0.46, 0.76]	0.99 [0.94, 1.00]		
Fourati 2021 [B]	176	23	113	314	0.61 [0.55, 0.67]	0.93 [0.90, 0.96]	-	•
Fourati 2020 [B]	175	23	116	314	0.60 [0.54, 0.66]	0.93 [0.90, 0.96]	+	•
Boum 2021	170	54	121	745	0.58 [0.53, 0.64]	0.93 [0.91, 0.95]	+	
Ristic 2021	25	0	18	77	0.58 [0.42, 0.73]	1.00 [0.95, 1.00]		-
Van Honacker 2021 (F)	200	12	169	3826	0.54 [0.49, 0.59]	1.00 [0.99, 1.00]	-	•
Turcato 2021 (B)	27	10	27	2355	0.50 [0.36, 0.64]	1.00 [0.99, 1.00]		
Olearo 2021 [A]	42	0	42	100	0.50 [0.39, 0.61]	1.00 [0.96, 1.00]		
Osterman 2021 [A]	173	6	208	294	0.45 [0.40, 0.51]	0.98 [0.96, 0.99]	+	
Korenkov 2021	90	2	120	1816	0.43 [0.36, 0.50]	1.00 [1.00, 1.00]	+	•
Caruana 202105	2	2	5	107	0.29 [0.04, 0.71]	0.98 [0.94, 1.00]		
Oh 2021	7	0	33	78	0.17 [0.07, 0.33]	1.00 [0.95, 1.00]		
					-	-	0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 11. Sensitivity and specificity of Standard Q COVID-19 Ag Test (SD Biosensor)

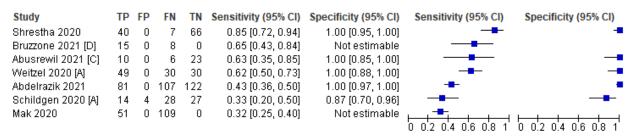
Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Martin-Sanchez 2021	214	3	7	657	0.97 [0.94, 0.99]	1.00 [0.99, 1.00]	•	
Von Ahnen 2021	12	0	1	906	0.92 [0.64, 1.00]	1.00 [1.00, 1.00]		•
Schildgen 2020 [C]	37	25	5	6	0.88 [0.74, 0.96]	0.19 [0.07, 0.37]		-
Igloi 2021	158	4	28	780	0.85 [0.79, 0.90]	0.99 [0.99, 1.00]	-	•
Mockel 2021	67	0	22	182	0.75 [0.65, 0.84]	1.00 [0.98, 1.00]		•
lqbal 2021	92	1	35	42	0.72 [0.64, 0.80]	0.98 [0.88, 1.00]		
Montero 2021	35	8	14	2486	0.71 [0.57, 0.83]	1.00 [0.99, 1.00]		
Kruttgen 2020	53	3	22	72	0.71 [0.59, 0.81]	0.96 [0.89, 0.99]		
Favresse 2021 [D]	67	0	29	92	0.70 [0.60, 0.79]	1.00 [0.96, 1.00]		•
Jegerlehner 2021	92	2	49	1319	0.65 [0.57, 0.73]	1.00 [0.99, 1.00]		
Schuit 2021 [B]	83	8	49	1456	0.63 [0.54, 0.71]	0.99 [0.99, 1.00]		•
Koeleman 2021 (B)	25	- 5	15	35	0.63 [0.46, 0.77]	0.88 [0.73, 0.96]		
Stohr 2021 [B]	118	4	74	1387	0.61 [0.54, 0.68]	1.00 [0.99, 1.00]		•
Osterman 2021 [B]	224	8	221	318	0.50 [0.46, 0.55]	0.98 [0.95, 0.99]	-	•
Baro 2021 [C]	44	- 7	57	178	0.44 [0.34, 0.54]	0.96 [0.92, 0.98]		•
Osterman 202108 [B]	33	- 7	72	296	0.31 [0.23, 0.41]	0.98 [0.95, 0.99]		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

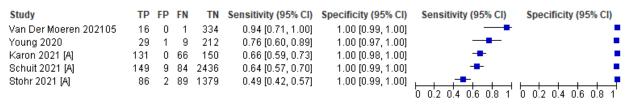
Figure 12. Sensitivity and specificity of Roche SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics)

Study	тр	FP	FN	TN	Constituity (05% CI)	Epocificity (05% CI)	Constituity (05% CI)	Epocificity (05% CI)
Study					Sensitivity (95% CI)		Sensitivity (95% CI)	Specificity (95% CI)
Sood 2021	127	99	9	539	0.93 [0.88, 0.97]	0.84 [0.81, 0.87]	-	-
Bachman 2021 [C]	84	5	8	72	0.91 [0.84, 0.96]	0.94 [0.85, 0.98]	-	
Pilarowski 2021 (A)	211	3	26	3062	0.89 [0.84, 0.93]	1.00 [1.00, 1.00]	-	
Shaikh 2021	39	16	7	137	0.85 [0.71, 0.94]	0.90 [0.84, 0.94]		-
James 2021 (A)	20	0	4	91	0.83 [0.63, 0.95]	1.00 [0.96, 1.00]		•
Bachman 2021 [G]	89	0	20	60	0.82 [0.73, 0.88]	1.00 [0.94, 1.00]	-	-
Pollock 202104	226	12	66	2004	0.77 [0.72, 0.82]	0.99 [0.99, 1.00]	-	
Shah 2021	258	7	76	1769	0.77 [0.72, 0.82]	1.00 [0.99, 1.00]	+	
Prince-Guerra 2021 [C]	101	0	41	520	0.71 [0.63, 0.78]	1.00 [0.99, 1.00]		
Frediani 2021	93	2	39	207	0.70 [0.62, 0.78]	0.99 [0.97, 1.00]		
McKay 2021	72	8	33	419	0.69 [0.59, 0.77]	0.98 [0.96, 0.99]		
Prince-Guerra 2021 [A]	113	0	63	651	0.64 [0.57, 0.71]	1.00 [0.99, 1.00]		
Prince-Guerra 2021 [D]	113	0	63	651	0.64 [0.57, 0.71]	1.00 [0.99, 1.00]		
Okoye 2021	24	0	21	2593	0.53 [0.38, 0.68]	1.00 [1.00, 1.00]		
Allan-Blitz 2021	1550	189	1603	15115	0.49 [0.47, 0.51]	0.99 [0.99, 0.99]		
Prince-Guerra 2021 [B]	44	4	79	2465	0.36 [0.27, 0.45]	1.00 [1.00, 1.00]		
James 2021 (B)	3	62	2093	0	0.00 [0.00, 0.00]	0.00 [0.00, 0.06]		•
Stokes 202109	0	1	6	990	0.00 [0.00, 0.46]	1.00 [0.99, 1.00]		
							'o 0.2 0.4 0.6 0.8 1'	0 0.2 0.4 0.6 0.8 1

Figure 13. Sensitivity and specificity of Binax NOW SARS-CoV-2 (Abbott)

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Porte 2020b [A]	30	1	2	31	0.94 [0.79, 0.99]	0.97 [0.84, 1.00]		
Bachman 2021 (B)	79	3	13	75	0.86 [0.77, 0.92]	0.96 [0.89, 0.99]		-
Jaaskelainen 2021 (A)	119	0	29	40	0.80 [0.73, 0.86]	1.00 [0.91, 1.00]	-	
Pray 2021 [A]	32	2	8	185	0.80 [0.64, 0.91]	0.99 [0.96, 1.00]		•
Herrera 2020	352	6	107	707	0.77 [0.73, 0.80]	0.99 [0.98, 1.00]	-	•
Bachman 2021 (F)	81	1	29	59	0.74 [0.64, 0.82]	0.98 [0.91, 1.00]		-
Ford 2021	37	15	17	982	0.69 [0.54, 0.80]	0.98 [0.98, 0.99]		•
Brihn 2021	98	12	51	1878	0.66 [0.58, 0.73]	0.99 [0.99, 1.00]		•
Bornemann 2021	52	9	39	1291	0.57 [0.46, 0.67]	0.99 [0.99, 1.00]		•
Pray 2021 [B]	7	14	10	840	0.41 [0.18, 0.67]	0.98 [0.97, 0.99]		


Figure 14. Sensitivity and specificity of Sofia SARS Antigen Fluorescent Immunoassay (Quidel)


Philippine COVID-19 Living Clinical Practice Guidelines

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Bruzzone 2021 [E]	60	0	0	0	1.00 [0.94, 1.00]	Not estimable	-	
Porte 2020b [B]	29	1	3	31	0.91 [0.75, 0.98]	0.97 [0.84, 1.00]		
Garcia 2021 [B]	113	- 5	57	181	0.66 [0.59, 0.74]	0.97 [0.94, 0.99]	-	•
Kahn 2021	57	39	31	2983	0.65 [0.54, 0.75]	0.99 [0.98, 0.99]		•
Liotti 2020	49	4	55	251	0.47 [0.37, 0.57]	0.98 [0.96, 1.00]		•
Kiro 2021	52	2	84	216	0.38 [0.30, 0.47]	0.99 [0.97, 1.00]		
Baccani 2021 (B)	10	0	18	65	0.36 [0.19, 0.56]	1.00 [0.94, 1.00]		
							0 0.2 0.4 0.6 0.8 1 0	0.2 0.4 0.6 0.8 1

Figure 15. Sensitivity and specificity of Standard F Covid19 Ag FIA (SD Biosensor)

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Seynaeve 2021 [C]	41	0	4	50	0.91 [0.79, 0.98]	1.00 [0.93, 1.00]		
Seynaeve 2021 [D]	44	0	6	50	0.88 [0.76, 0.95]	1.00 [0.93, 1.00]		-
Nordgren 2021 [B]	124	45	32	131	0.79 [0.72, 0.86]	0.74 [0.67, 0.81]		-
Favresse 2021 [C]	74	3	22	89	0.77 [0.67, 0.85]	0.97 [0.91, 0.99]		0 0.2 0.4 0.6 0.8 1

Figure 18. Sensitivity and specificity of Coronavirus Ag Rapid Test Cassette (Healgen Scientific)

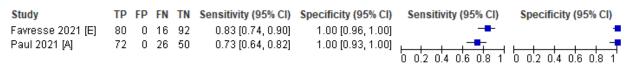


Figure 19. Sensitivity and specificity of VITROS Immunodiagnostic Products SARS-CoV-2 Antigen test (Ortho Clinical Diagnostics)

Figure 20. Sensitivity and specificity of NADAL COVID-19 Rapid Antigen Test (Nal Von Minden)

Philippine COVID-19 Living Clinical Practice Guidelines

Study TP FP FN TN Sensitivity (95% Cl) Specificity (95% Cl) Sensitivity (95% Cl) Specificity (95% Cl)
Study TP FP FN TN Sensitivity (95% Cl) Specificity (95% Cl) Sensitivity (95% Cl) Specificity (95% Cl)
Study TP FP FN TN Sensitivity (95% Cl) Sensitivity (95% Cl) Sensitivity (95% Cl) Specificity (95% Cl) Pollock 202105 135 21 206 1136 0.40 [0.34, 0.45] 0.98 [0.97, 0.99] Image: Close of the sensitivity (95% Close of the sensititity (95% Close of the sensitivity (95% Close of the sensitivity (
Study TP FP FN TN Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Specificity (95% CI)
Study TP FP FN TN Sensitivity (95% CI) Sensitivity (95% CI) Specificity (95% CI)
Study TP FP FN TN Sensitivity (95% Cl) Sensitivity (95% Cl) Sensitivity (95% Cl) Specificity (95% Cl) Bouassa 2021 90 0 10 50 0.90 [0.82, 0.95] 1.00 [0.93, 1.00] Image: Figure 26. Sensitivity and specificity of SIENNA COVID-19 Sensitivity (95% Cl) Specificity (95% Cl)
Study TP FP FN TN Sensitivity (95% Cl) Sensitivity (95% Cl) Sensitivity (95% Cl) Specificity (95% Cl) Kim 2021 [A] 27 2 3 98 0.90 [0.73, 0.98] 0.98 [0.93, 1.00] Image: the sensitivity (95% Cl) Specificity (95% Cl) Sp
Study TP FP FN TN Sensitivity (95% Cl) Sensitivity (95% Cl) Sensitivity (95% Cl) Specificity (95% Cl)
Study TP FP FN TN Sensitivity (95% CI) Sensitivity (95% CI) Sensitivity (95% CI) Specificity (95% CI) Rottenstreich 2021 5 0 4 1317 0.56 [0.21, 0.86] 1.00 [1.00, 1.00] Image: Comparison of the sensitivity (95% CI) Specificity (95% CI
Study TP FP FN TN Sensitivity (95% Cl) Sensitivity (95% Cl) Sensitivity (95% Cl) Specificity (95% Cl) Weitzel 2020 [B] 0 1 9 0.00 [0.00, 0.34] 0.90 [0.55, 1.00] Image: Close of the sensitivity (95% Close of the sensititity (95% Close of the sensitiv

Study Weitzel 2020 [C]	TP 13	0	65	31	Sensitivity (95% Cl) 0.17 [0.09, 0.27]	1.00 [0.89, 1.00]	Sensitivity (95% Cl) Specificity (95% Cl)	
Figure 3	31. Se	ens	sitivi	ty a	nd specificity of F	luaketai SARS-Co	V-2 Rapid Antigen Test (Savant)	
Study	тр	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI) Specificity (95% CI))
Homza 2021 [A]	52	2	38	133	0.58 [0.47, 0.68]	0.99 [0.95, 1.00]		- -
Figure	32.	Ser	nsit	ivity	and specificity of	SARS-CoV-2 Ant	gen Rapid Test Kit (JOYSBIO)	

 Study
 TP
 FP
 FN
 TN
 Sensitivity (95% Cl)
 Sensitivity (95% Cl)
 Sensitivity (95% Cl)
 Specificity (95% Cl)

 Kweon 2021 [B]
 192
 0
 272
 502
 0.41 [0.37, 0.46]
 1.00 [0.99, 1.00]
 Image: Comparison of the sensitivity (95% Cl)
 Specificity (95% Cl)

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Van Honacker 2021 [C]	32	0	0	0	1.00 [0.89, 1.00]	Not estimable		
Van Honacker 2021 (A)	32	0	0	0	1.00 [0.89, 1.00]	Not estimable		
Van Honacker 2021 (E)	32	0	0	0	1.00 [0.89, 1.00]	Not estimable	-	
Porte 2020b (B)	27	0	0	0	1.00 [0.87, 1.00]	Not estimable	-	
Porte 2020b [A]	27	0	0	0	1.00 [0.87, 1.00]	Not estimable		
Porte 2020a	52	0	0	0	1.00 [0.93, 1.00]	Not estimable		
Takeda 2020 Rooby 2020	32 10	0 0	0 0	0 0	1.00 [0.89, 1.00]	Not estimable		
Scohy 2020 PHE 2020(b)	8	0	0	0	1.00 [0.69, 1.00] 1.00 [0.63, 1.00]	Not estimable Not estimable		
Leixner 2021	33	0	0	0	1.00 [0.89, 1.00]	Not estimable		
Jung 2021	23	Ő	õ	Ő	1.00 [0.85, 1.00]	Not estimable		
Kim 2021 [A]	15	Õ	õ	Õ	1.00 [0.78, 1.00]	Not estimable		
Kruger 2020(c)	18	0	0	0	1.00 [0.81, 1.00]	Not estimable		
Fenollar 2020(b)	1	0	0	0	1.00 [0.03, 1.00]	Not estimable		
Baccani 2021 [C]	5	0	0	0	1.00 [0.48, 1.00]	Not estimable		
Baccani 2021 (B)	5	0	0	0	1.00 [0.48, 1.00]	Not estimable		
Baccani 2021 [A]	5	0	0	0	1.00 [0.48, 1.00]	Not estimable		
Weitzel 2020 [D]	54	0	0	0	1.00 [0.93, 1.00]	Not estimable	-	
Jaaskelainen 2021 (B)	96	0	1	0	0.99 [0.94, 1.00]	Not estimable		
Alemany 2020	557	0	6	0	0.99 [0.98, 1.00]	Not estimable		
Jaaskelainen 2021 (A) RUE 2020(o)	88	0 0	1 1	0 0	0.99 [0.94, 1.00]	Not estimable		
PHE 2020(a) Kweon 2021 (B)	58 107	0	2	0	0.98 [0.91, 1.00]	Not estimable Not estimable		
Jaaskelainen 2021 [C]	90	0	2	0	0.98 [0.94, 1.00] 0.98 [0.92, 1.00]	Not estimable		
Kurihara 2021	44	0	1	Ő	0.98 [0.88, 1.00]	Not estimable		
Garcia 2021 [B]	82	Ő	2	Õ	0.98 [0.92, 1.00]	Not estimable	-	
Soleimani 2021][B]	151	Ō	5	Ō	0.97 [0.93, 0.99]	Not estimable		
Van Honacker 2021 [D]	30	0	1	Ō	0.97 [0.83, 1.00]	Not estimable		
Garcia 2021 [A]	81	0	3	0	0.96 [0.90, 0.99]	Not estimable	-	
Fenollar 2020(a)	106	0	4	0	0.96 [0.91, 0.99]	Not estimable	•	
Kweon 2021 (A)	105	0	4	0	0.96 [0.91, 0.99]	Not estimable	-	
Halfon 2021	52	0	2	0	0.96 [0.87, 1.00]	Not estimable		
Fourati 2020 [E]	125	0	5	0	0.96 [0.91, 0.99]	Not estimable		
Fourati 2021 [D]	125	0	5	0	0.96 [0.91, 0.99]	Not estimable		
Kruger 2021	69	0	3	0	0.96 [0.88, 0.99]	Not estimable		
Van Honacker 2021 (F)	161	0	8	0	0.95 [0.91, 0.98]	Not estimable		
Liotti 2020 Hortord 2021	20 39	0 0	1 2	0 0	0.95 [0.76, 1.00]	Not estimable Not estimable	-	
Hartard 2021 Paul 2021 [A]	- 39 66	0	4	0	0.95 [0.83, 0.99] 0.94 [0.86, 0.98]	Not estimable		
Eleftheriou 2021	33	0	2	0	0.94 [0.81, 0.99]	Not estimable		
Fourati 2021 [F]	122	Ő	8	Ő	0.94 [0.88, 0.97]	Not estimable	-	
Fourati 2020 [D]	122	Ō	8	Ō	0.94 [0.88, 0.97]	Not estimable	-	
Nordgren 2021 [B]	106	0	7	0	0.94 [0.88, 0.97]	Not estimable	-	
Van Honacker 2021 [B]	30	0	2	0	0.94 [0.79, 0.99]	Not estimable		
Montero 2021	30	0	2	0	0.94 [0.79, 0.99]	Not estimable		
Fourati 2021 [B]	121	0	9	0	0.93 [0.87, 0.97]	Not estimable	-	
Fourati 2020 [B]	118	0	9	0	0.93 [0.87, 0.97]	Not estimable	-	
Hauser 2021	52	0	5	0	0.91 [0.81, 0.97]	Not estimable		
Kim 2021 [B]	49	0	5	0	0.91 [0.80, 0.97]	Not estimable		
Nash 2020 Soleimani 2021 (A)	48	0 0	5 15	0 0	0.91 [0.79, 0.97] 0.90 [0.85, 0.95]	Not estimable		
Kruger 2020(a)	141 8	0	1	0	0.89 [0.52, 1.00]	Not estimable Not estimable		
Nordgren 2021 [A]	100	Ő	13	Ő	0.88 [0.81, 0.94]	Not estimable	-	
Fourati 2020 [C]	113		17	Ō	0.87 [0.80, 0.92]	Not estimable	-	
PHE 2020(c) [non-HCW tested]	92	0	14	0	0.87 [0.79, 0.93]	Not estimable	-	
Veyrenche 2020	13	0	2	0	0.87 [0.60, 0.98]	Not estimable		
Bulilete 2021	38	0	6	0	0.86 [0.73, 0.95]	Not estimable		
Ford 2021	23	0	4	0	0.85 [0.66, 0.96]	Not estimable		
Weitzel 2020 [A]	45	0	8	0	0.85 [0.72, 0.93]	Not estimable		
Lambert-Niclot 2020	37	0	8	0	0.82 [0.68, 0.92]	Not estimable		
Mertens 2020	65	0	23	0	0.74 [0.63, 0.83]	Not estimable		
Fourati 2021 [A]	93	0 0	37 37	0	0.72 [0.63, 0.79]	Not estimable		
Fourati 2020 [A] Finana 2021	91 25	0	11	0 0	0.71 [0.62, 0.79] 0.69 [0.52, 0.84]	Not estimable Not estimable		
Fourati 2021 [C]	113	0	55	0	0.67 [0.60, 0.74]	Not estimable	-	
Kruger 2020(b)	2	0	1	0	0.67 [0.09, 0.99]	Not estimable		
Wachinger 2021	170	26	94	1306	0.64 [0.58, 0.70]	0.98 [0.97, 0.99]	+	•
Paul 2021 [B]	51	0	29	0	0.64 [0.52, 0.74]	Not estimable		
Fourati 2021 [E]	81	0	49	0	0.62 [0.53, 0.71]	Not estimable		
Thakur 2021	27	0	33	0	0.45 [0.32, 0.58]	Not estimable		
Oh 2021	7	0	10	101	0.41 [0.18, 0.67]	1.00 [0.96, 1.00]		•
Weitzel 2020 [C]	11	0	41	0	0.21 [0.11, 0.35]	Not estimable		
							U U.2 U.4 0.6 0.8 1 (u u.2 U.4 U.6 O.8 1

Figure 34. Sensitivity and specificity of RAgT if Ct value < 25

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Baccani 2021 (A)	9	0	0	0	1.00 [0.66, 1.00]	Not estimable		
Kim 2021 [B]	45	0	1	0	0.98 [0.88, 1.00]	Not estimable		
Van Honacker 2021 [A]	30	0	6	0	0.83 [0.67, 0.94]	Not estimable		
Jaaskelainen 2021 [A]	28	0	6	0	0.82 [0.65, 0.93]	Not estimable		
Alemany 2020	315	0	73	0	0.81 [0.77, 0.85]	Not estimable		
Kim 2021 [A] Jaaskelainen 2021 [C]	11 26	0	3 8	0 0	0.79 [0.49, 0.95]	Not estimable		
Jaaskelainen 2021 [C] Porte 2020a	13	0 0	5	0	0.76 [0.59, 0.89] 0.72 [0.47, 0.90]	Not estimable Not estimable		
Van Honacker 2021 [C]	26	Ő	10	Ő	0.72 [0.55, 0.86]	Not estimable		
Jaaskelainen 2021 [B]	24	Ō	11	Ō	0.69 [0.51, 0.83]	Not estimable		
Nash 2020	32	0	15	0	0.68 [0.53, 0.81]	Not estimable		
Kruger 2021	22	0	11	0	0.67 [0.48, 0.82]	Not estimable		
Kruger 2020(c)	18	0	11	0	0.62 [0.42, 0.79]	Not estimable		
Van Honacker 2021 (E)	16	0	10	0	0.62 [0.41, 0.80]	Not estimable		
Porte 2020b [A]	3	0	2	0	0.60 [0.15, 0.95]	Not estimable		
Takeda 2020	18	0	12	0	0.60 [0.41, 0.77]	Not estimable		
Jung 2021 Van Hanaskar 2024 (D)	6	0	4	0	0.60 [0.26, 0.88]	Not estimable		
Van Honacker 2021 (D) Eleftheriou 2021	15 9	0 0	11 7	0 0	0.58 [0.37, 0.77] 0.56 [0.30, 0.80]	Not estimable Not estimable		
Ford 2021	15	0	12	0	0.56 [0.35, 0.75]	Not estimable		
Baccani 2021 [C]	5	Ő	4	Ő	0.56 [0.21, 0.86]	Not estimable	_	
Weitzel 2020 [D]	14	0	12	0	0.54 [0.33, 0.73]	Not estimable		
Fenollar 2020(a)	38	0	34	0	0.53 [0.41, 0.65]	Not estimable		
Kurihara 2021	18	0	20	0	0.47 [0.31, 0.64]	Not estimable		
PHE 2020(c) [non-HCW tested]	122	0	144	0	0.46 [0.40, 0.52]	Not estimable	-	
Baccani 2021 (B)	4	0	5	0	0.44 [0.14, 0.79]	Not estimable		
Halfon 2021	20	0	26	0	0.43 [0.29, 0.59]	Not estimable		
Fenollar 2020(b)	9	0	12	0	0.43 [0.22, 0.66]	Not estimable		
Nordgren 2021 (B)	18	0	25	0	0.42 [0.27, 0.58]	Not estimable		
Porte 2020b [B] Kruger 2020(b)	2	0 0	3 3	0 0	0.40 [0.05, 0.85] 0.40 [0.05, 0.85]	Not estimable Not estimable		
Garcia 2021 [B]	31	0	55	0	0.36 [0.26, 0.47]	Not estimable		
Fourati 2020 [B]	57	Ő	103	Ő	0.36 [0.28, 0.44]	Not estimable	-	
Fourati 2021 [B]	58	Ō	105	Ō	0.36 [0.28, 0.43]	Not estimable		
Bulilete 2021	7	0	13	0	0.35 [0.15, 0.59]	Not estimable		
Liotti 2020	29	0	54	0	0.35 [0.25, 0.46]	Not estimable		
Fourati 2020 [E]	56	0	105	0	0.35 [0.27, 0.43]	Not estimable	-	
Van Honacker 2021 (B)	9	0	17	0	0.35 [0.17, 0.56]	Not estimable		
Fourati 2021 [D]	56		107	0	0.34 [0.27, 0.42]	Not estimable	+	
Fourati 2020 [D]	55		108	0	0.34 [0.27, 0.42]	Not estimable		
Fourati 2021 [F]	55 37	0	108 82	0 0	0.34 [0.27, 0.42] 0.31 [0.23, 0.40]	Not estimable	—	
PHE 2020(a) Fourati 2020 [C]	49		112	0	0.30 [0.23, 0.40]	Not estimable Not estimable		
Fourati 2021 [C]	49		114	0	0.30 [0.23, 0.38]	Not estimable	-	
Montero 2021	5	Ō	12	Ō	0.29 [0.10, 0.56]	Not estimable		
Nordgren 2021 (A)	12	0	31	0	0.28 [0.15, 0.44]	Not estimable		
Van Honacker 2021 [F]	39	0	109	0	0.26 [0.19, 0.34]	Not estimable	-	
Kweon 2021 [A]	93		262	0	0.26 [0.22, 0.31]	Not estimable	•	
Kruger 2020(a)	2	0	6	0	0.25 [0.03, 0.65]	Not estimable	_	
Mertens 2020	11	0	33	0	0.25 [0.13, 0.40]	Not estimable		
Garcia 2021 [A]	21	0	65	0	0.24 [0.16, 0.35]	Not estimable	+	
Kweon 2021 [B] Sooby 2020	85 22	0 0	270 74	0 0	0.24 [0.20, 0.29]	Not estimable	-	
Scohy 2020 Lambert-Niclot 2020	10	0	39	0	0.23 [0.15, 0.33] 0.20 [0.10, 0.34]	Not estimable Not estimable		
Weitzel 2020 [A]	4	Ő	22	0	0.15 [0.04, 0.35]	Not estimable		
Hauser 2021	16	Ō	96	Ō	0.14 [0.08, 0.22]	Not estimable	-	
PHE 2020(b)	5	0	33	0	0.13 [0.04, 0.28]	Not estimable		
Fourati 2021 [E]	15	0	148	0	0.09 [0.05, 0.15]	Not estimable	+	
Finana 2021	3	0	31	0	0.09 [0.02, 0.24]	Not estimable	-	
Thakur 2021	4	0	44	0	0.08 [0.02, 0.20]	Not estimable	+	
Weitzel 2020 [C]	2	0	24	0	0.08 [0.01, 0.25]	Not estimable	•	
Fourati 2020 [A]	12	0	148	0	0.07 [0.04, 0.13]	Not estimable	*	
Fourati 2021 [A] Vevrenche 2020	12	0	151	0	0.07 [0.04, 0.13]	Not estimable	• •	
Veyrenche 2020 Hartard 2021	0 0	0 0	30 5	0 0	0.00 [0.00, 0.12] 0.00 [0.00, 0.52]	Not estimable Not estimable		
Frantaria 2021	0	0	J	0	0.00 [0.00, 0.02]	NOT COULIDABLE		

Figure 35. Sensitivity and specificity of RAgT if Ct value > 25

Study	ТР	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Pilarowski 2021 (B)	171	43	0	3088	1.00 [0.98, 1.00]	0.99 [0.98, 0.99]		
Bruzzone 2021 [A]	16	0	0	0	1.00 [0.79, 1.00]	Not estimable		
Bruzzone 2021 [E]	60	0	0	0	1.00 [0.94, 1.00]	Not estimable	-	
Bruzzone 2021 [G]	60	0	0	0	1.00 [0.94, 1.00]	Not estimable	-	
Escriva 2021	116	0	1	331	0.99 [0.95, 1.00]	1.00 [0.99, 1.00]		•
Diao 2020	55	0	1	0	0.98 [0.90, 1.00]	Not estimable		
Amer 2021	28	28	1	22	0.97 [0.82, 1.00]	0.44 [0.30, 0.59]		
Klein 2021	52	0	2	0	0.96 [0.87, 1.00]	Not estimable		
Bouassa 2021	74	0	3	0	0.96 [0.89, 0.99]	Not estimable	-	
Takeda 2020	48	0	2	0	0.96 [0.86, 1.00]	Not estimable		
Alemany 2020	813	0	35	0	0.96 [0.94, 0.97]	Not estimable	•	
Jaaskelainen 2021 (A)	116	0	- 7	0	0.94 [0.89, 0.98]	Not estimable	-	
Kruger 2021	87	0	6	0	0.94 [0.86, 0.98]	Not estimable	-	
Abdelrazik 2021	71	0	5	0	0.93 [0.85, 0.98]	Not estimable	-	
Osmanodja 2021	62	0	- 5	0	0.93 [0.83, 0.98]	Not estimable		
Jaaskelainen 2021 [C]	116	0	10	0	0.92 [0.86, 0.96]	Not estimable	+	
PHE 2020(b)	11	0	1	0	0.92 [0.62, 1.00]	Not estimable		
Seynaeve 2021 [C]	41	0	4	50	0.91 [0.79, 0.98]	1.00 [0.93, 1.00]		-
Jaaskelainen 2021 (B)	120	0	12	0	0.91 [0.85, 0.95]	Not estimable	-	
Cento 2021	126	0	13	0	0.91 [0.85, 0.95]	Not estimable	-	
Bruzzone 2021 [B]	19	0	2	0	0.90 [0.70, 0.99]	Not estimable		
Schuit 2021 [A]	137	20	15	2505	0.90 [0.84, 0.94]	0.99 [0.99, 1.00]	+	•
PHE 2020(a)	82	0	9	0	0.90 [0.82, 0.95]	Not estimable		
Fenollar 2020(a)	137	0	16	0	0.90 [0.84, 0.94]	Not estimable	-	
Soleimani 2021][B]	174	0	22	0	0.89 [0.84, 0.93]	Not estimable	+	
Schuit 2021 [B]	79	12	12	1493	0.87 [0.78, 0.93]	0.99 [0.99, 1.00]		•
Baro 2021 (B)	26	0	4	0	0.87 [0.69, 0.96]	Not estimable		
Nash 2020	65	0	13	0	0.83 [0.73, 0.91]	Not estimable		
Baro 2021 [D]	25	0	5	0	0.83 [0.65, 0.94]	Not estimable		
Baro 2021 [C]	25	0	5	0	0.83 [0.65, 0.94]	Not estimable		
Fenollar 2020(b)	9	0	2	0	0.82 [0.48, 0.98]	Not estimable		
Leli 2021	107	37	25	623	0.81 [0.73, 0.87]	0.94 [0.92, 0.96]	+	
Holzner 2021	337	5	86	1033	0.80 [0.76, 0.83]	1.00 [0.99, 1.00]	+	
Bruzzone 2021 [C]	39	0	11	0	0.78 [0.64, 0.88]	Not estimable		
Soleimani 2021 (A)	152	0	44	0	0.78 [0.71, 0.83]	Not estimable	-	
Baro 2021 [A]	23	0	- 7	0	0.77 [0.58, 0.90]	Not estimable		
Adnan 2021	49	2	16	190	0.75 [0.63, 0.85]	0.99 [0.96, 1.00]		-
PHE 2020(c) [non-HCW tested]	166	0	56	0	0.75 [0.69, 0.80]	Not estimable	-	
Bruzzone 2021 [F]	17	0	6	0	0.74 [0.52, 0.90]	Not estimable		
Scohy 2020	24	0	10	0	0.71 [0.53, 0.85]	Not estimable		
Baro 2021 [E]	21	0	9	0	0.70 [0.51, 0.85]	Not estimable		
Seynaeve 2021 [A]	31	0	14	50	0.69 [0.53, 0.82]	1.00 [0.93, 1.00]		-
Okoye 2021	24	0	12	0	0.67 [0.49, 0.81]	Not estimable		
Bruzzone 2021 [D]	15	0	8	0	0.65 [0.43, 0.84]	Not estimable		
Liotti 2020	43	0		0	0.57 [0.45, 0.68]	Not estimable		
Veyrenche 2020	13		17	0	0.43 [0.25, 0.63]	Not estimable		_
Oh 2021	7	0	19	92	0.27 [0.12, 0.48]	1.00 [0.96, 1.00]		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 36. Sensitivity and specificity of RAgT if other Ct thresholds for 'higher' viral load

Study	TP	FP	FN	TN	Sensitivity (95% CI)	Specificity (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)
Klein 2021	26	0	10	0	0.72 [0.55, 0.86]	Not estimable		
Bouassa 2021	16	0	7	0	0.70 [0.47, 0.87]	Not estimable		
Nash 2020	15	0	7	0	0.68 [0.45, 0.86]	Not estimable		
Amer 2021	26	62	14	33	0.65 [0.48, 0.79]	0.35 [0.25, 0.45]		
Alemany 2020	59	0	44	0	0.57 [0.47, 0.67]	Not estimable		
Diao 2020	86	0	66	0	0.57 [0.48, 0.65]	Not estimable		
Asai 2021	16	4	14	236	0.53 [0.34, 0.72]	0.98 [0.96, 1.00]		•
Jaaskelainen 2021 [C]	10	0	16	0	0.38 [0.20, 0.59]	Not estimable		
Cento 2021	20	0	39	0	0.34 [0.22, 0.47]	Not estimable		
Kruger 2021	4	0	8	0	0.33 [0.10, 0.65]	Not estimable		
PHE 2020(c) [non-HCW tested]	48	0	102	0	0.32 [0.25, 0.40]	Not estimable	-	
Jaaskelainen 2021 (B)	8	0	18	0	0.31 [0.14, 0.52]	Not estimable		
Fenollar 2020(a)	- 7	0	22	0	0.24 [0.10, 0.44]	Not estimable		
Liotti 2020	6	0	22	0	0.21 [0.08, 0.41]	Not estimable		
Leli 2021	- 7	30	27	596	0.21 [0.09, 0.38]	0.95 [0.93, 0.97]		
Takeda 2020	2	0	10	0	0.17 [0.02, 0.48]	Not estimable	-	
PHE 2020(a)	13	0	74	0	0.15 [0.08, 0.24]	Not estimable		
Jaaskelainen 2021 (A)	3	0	22	0	0.12 [0.03, 0.31]	Not estimable	-	
Scohy 2020	8	0	64	0	0.11 [0.05, 0.21]	Not estimable		
Fenollar 2020(b)	1	0	10	0	0.09 [0.00, 0.41]	Not estimable	-	
PHE 2020(b)	2	0	32	0	0.06 [0.01, 0.20]	Not estimable	-	
Veyrenche 2020	0	0	15	0	0.00 [0.00, 0.22]	Not estimable	•—-	
Okoye 2021	0	0	9	0	0.00 [0.00, 0.34]	Not estimable		
							0 0.2 0.4 0.6 0.8 1	0 0.2 0.4 0.6 0.8 1

Figure 37. Sensitivity and specificity of RAgT if other Ct thresholds for 'lower' viral load

Saliva	0 0.2 0. 4 0.0 0.0 I 0	0.2 0.7 0.0 0.0 1
Study TP FP FN Sensitivity (95% Cl) Specificity (95% Cl) Ishii 2021 [D] 8 1 0 123 1.00 [0.63, 1.00] 0.99 [0.96, 1.00] Kobayashi 2021 [B] 111 3 3 5272 0.97 [0.93, 0.99] 1.00 [1.00, 1.00] Asai 2021 49 4 14 238 0.78 [0.66, 0.87] 0.98 [0.96, 1.00] Seitz 2021 8 0 10 22 0.44 [0.22, 0.69] 1.00 [0.65, 1.00] Mak 2020 18 0 27 0 0.40 [0.26, 0.56] Not estimable Ishii 2021 [B] 3 0 6 84 0.33 [0.07, 0.70] 1.00 [0.65, 1.00] Mak 2020 18 0 27 0 0.40 [0.26, 0.56] Not estimable Ishii 2021 [B] 3 0 6 84 0.33 [0.07, 0.70] 1.00 [0.65, 1.00] Nagura-Ikeda 2020 12 0 91 0 0.12 [0.06, 0.19] Not estimable Uwamino 2021 [B] 4 0 37 <td>Sensitivity (95% CI)</td> <td>Specificity (95% Cl) -= -= </td>	Sensitivity (95% CI)	Specificity (95% Cl) -= -=
Sputum	0 0.2 0.4 0.6 0.8 1 0	0.2 0.4 0.6 0.8 1
Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Mak 2020 5 0 0 0.11 [0.04, 0.24] Not estimable	Sensitivity (95% CI)	Specificity (95% CI)
Mak 2020 5 0 40 0 0.11 [0.04, 0.24] Not estimable	0 0.2 0.4 0.6 0.8 1 0	0.2 0.4 0.6 0.8 1
Study TP FP FN TN Sensitivity (95% Cl) Specificity (95% Cl) Yokota 2021 31 2 3 307 0.91 [0.76, 0.98] 0.99 [0.98, 1.00]	Sensitivity (95% CI)	Specificity (95% CI)
Exhaled breath	0 0.2 0.4 0.6 0.8 1 0	0.2 0.4 0.6 0.8 1
Study TP FP FN TN Sensitivity (95% Cl) Specificity (95% Cl) Maniscalco 2021 12 1 1 91 0.92 [0.64, 1.00] 0.99 [0.94, 1.00]	Sensitivity (95% Cl)	Specificity (95% Cl)
OP	0 0.'2 0.'4 0.'6 0.'8 1 '0	0.2 0.4 0.6 0.8 1
Study TP FP FN TN Sensitivity (95% Cl) Specificity (95% Cl) Nsoga 2021 136 2 32 232 0.81 [0.74, 0.87] 0.99 [0.97, 1.00] Kahn 2021 57 39 31 2983 0.65 [0.54, 0.75] 0.99 [0.97, 1.00] Wagenhauser 2021 [A] 13 0 10 783 0.57 [0.34, 0.77] 1.00 [1.00, 1.00] Wagenhauser 2021 [B] 7 4 8 1010 0.47 [0.21, 0.73] 1.00 [0.99, 1.00] Wagenhauser 2021 [C] 23 12 40 3146 0.37 [0.25, 0.50] 1.00 [0.99, 1.00]	Sensitivity (95% CI)	Specificity (95% Cl)
Study TP FP FN TN Sensitivity (95% Cl) Specificity (95% Cl)	Sensitivity (95% CI)	Specificity (95% CI)
Allan-Blitz 2021 1550 189 1603 15115 0.49 [0.47, 0.51] 0.99 [0.99, 0.99]		0.2 0.4 0.6 0.8 1
Nasal (anterior nares + mid turbinate) Study TP FP FN TN Sensitivity (95% CI) Specificity (95% CI) Denina 2021 16 14 1 160 0.94 [0.71, 1.00] 0.92 [0.87, 0.96] Sond 2021 127 99 9 539 0.93 [0.88, 0.97] 0.94 [0.81, 0.87] Bachman 2021 [C] 84 4 8 72 0.91 [0.84, 0.96] 0.94 [0.81, 0.87] Bachman 2021 [D] 84 4 8 78 0.91 [0.84, 0.96] 0.95 [0.88, 0.99] Nikolai 2021 [A] 211 3 26 3062 0.89 [0.84, 0.93] 1.00 [0.94, 1.00] Osmanodja 2021 62 1 8 308 0.89 [0.77, 0.92] 0.96 [0.89, 0.99] Chikolai 2021 [A] 51 0 0.86 [0.77, 0.92] 0.96 [0.84, 0.94] 1.00 [0.98, 1.00] Bachman 2021 [A] 64 14 11 260 0.85 [0.75, 0.92] 0.95 [0.92, 0.97] Shaikh 2021 39 16 7 137 0.85 [0.77, 0.94] 0.	Sensitivity (95% CI)	Specificity (95% CI)

Figure 38. Sensitivity and specificity of RAgT per specimen ty